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Recap from last lecture - Overview power system
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Learning objectives

After this part of the lecture and additional reading, you should be able to . . .

1 . . . calculate complex voltages, currents and powers in single-phase
systems using phasors;

2 . . . explain standard configurations of three-phase power systems;

3 . . . calculate complex voltages, currents and powers in balanced
three-phase systems using the concepts of phasors and single-phase
equivalent circuits.
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Review: Calculations with complex numbers

Consider a complex number z = a + jb, where a ∈ R, b ∈ R and j is the
imaginary unit satisfying j2 = −1

Complex conjugate of z is defined as z∗ = a− jb

Absolute value |z| and argument φ of z are defined as

|z| =
√

a2 + b2, ϕ = arctan

(
b
a

)
(if a > 0 which is usually the case in power systems; otherwise use
atan2-function to determine ϕ)

Polar representation of z via Euler’s formula

z = |z|ejϕ = |z| ϕ

Conversion of radians to degrees: 1 rad = 57.3 degrees
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Some general assumptions

In this part of the lecture, we will consider single- and three-phase AC
networks

We will do this under the following assumptions
The network only contains passive elements (R, L, C) and purely sinusoidal
current and voltage sources of identical frequencies

The network is in steady-state

Example single-phase circuit:

V̂a sin(θa + ωt)

R L

V̂b sin(θb + ωt)C
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1 Single-phase AC waveforms

Instantanteous values (στιγμιαίες τιμές) of voltage and current at a
network element given by

v(t) = V̂ cos(ωt)

i(t) = Î cos(ωt − ϕ)

V̂ and Î are the amplitudes (μέγιστη τιμή) of the respective waveforms
(κυμματομορφές)

ϕ is the phase shift (διαφορά φάσης) between voltage and current

ω = 2πf , where f is the stationary (στάσιμη) electrical frequency of the
network (e.g., 50 Hz in Europe; 60 Hz in US)

Instead of peak-to-peak amplitudes V̂ and Î, often root-mean-square
(also called effective) amplitudes V and I used

V̂ =
√

2V , Î =
√

2I
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1 Single-phase AC waveforms - Example (time on x-axis)
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1 Single-phase AC waveforms - Example (phase on x-axis)
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1 Power in AC single-phase systems

Instantaneous single-phase AC power

p(t) = v(t)i(t) = V̂ Î cos(ωt) cos(ωt − ϕ)

(On board)

By using the trigonometric identities

cos(ωt − ϕ) = cos(ωt) cos(ϕ) + sin(ωt) sin(ϕ)

cos2(ωt) =
1
2

(1 + cos(2ωt)), sin(ωt) cos(ωt) =
1
2

sin(2ωt)

we have that

p(t) = V̂ Î cos(ωt) (cos(ωt) cos(ϕ) + sin(ωt) sin(ϕ))

= V̂ Î
(

(cos(ωt))2 cos(ϕ) + cos(ωt) sin(ωt) sin(ϕ)
)

= V̂ Î
(

1
2

(1 + cos(2ωt)) cos(ϕ) +
1
2

sin(2ωt) sin(ϕ)

)
=

1
2

V̂ Î cos(ϕ)(1 + cos(2ωt)) +
1
2

V̂ Î sin(ϕ) sin(2ωt)
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1 Individual components of instantaneous power
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1 Active power in single-phase systems

p1(t) is oscillating between 0 and V̂ Î cos(ϕ)

p1(t) never changes sign→ always flows in same direction

The average value over time of p1(t) is

P =
1
T

T∫
0

p(t)dt =
1
2

V̂ Î cos(ϕ) = VI cos(ϕ)

P is called active power (ενεργός ισχύς)

P is the only ”useful” component of p(t)

cos(ϕ) is called power factor (συντελεστής ισχύος)

ϕ is called power factor angle

The unit of P is the Watt [W]
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1 Reactive power in single-phase systems

p2(t) is oscillating between ±V̂ Î sin(ϕ)

Average value over time of p2(t) is zero→ no ”useful” work

The amplitude of the waveform p2(t) is

Q =
1
2

V̂ Î sin(ϕ) = VI sin(ϕ)

Q is called reactive power (άεργος ισχύς)

The unit of Q is the Volt-Ampere-reactive [Var] (also used: [var])
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1 Reactive power in RLC circuits

In RLC circuits, Q appears because of the presence of inductors and
capacitors

In fact, Q is the time derivative of the energy stored in inductors and
capacitors

These elements continuously accumulate and release energy

They never release more energy than they have accumulated (that’s why
they are also called passive elements)

→ The energy is always nonnegative

Important: in general networks, it is far more difficult to associate a clear
physical meaning to Q
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2 Phasors in electrical power systems

Sinusoidal waveforms can also be represented by phasors in the
complex plane

Phasors are very popular in electric power systems

Main reasons: simplify visualisation and calculation of electrical networks

This is very useful for analysis, design and operation of power systems
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2 Definition of a phasor (φασιθέτης)

Consider
x(t) = X̂ cos(ωt + θ)

Via Euler’s Formula, we define the phasor corresponding to x(t) as1

X =
X̂√
2

(cos(θ) + j sin(θ)) = X (cos(θ) + j sin(θ))︸ ︷︷ ︸
trigonometric form

= Xejθ︸ ︷︷ ︸
exponential form

Then
x(t) =

√
2<{Xejωt},

i.e., momentary value of x(t) corresponds to real part of the phasor X
rotating at angular speed ω

Alternative common notation for a phasor

X = Xejθ = X θ︸ ︷︷ ︸
angular form

1Here j denotes the imaginary unit.
,
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2 Voltages and currents as complex phasors

Phasors of voltage and current

V = V (cos(ϕv ) + j sin(ϕv )) = Vejϕv = V ϕv

I = I (cos(ϕi ) + j sin(ϕi )) = Iejϕi = I ϕi

ϕ = ϕv − ϕi

Note: as we have assumed stationary conditions, it suffices to use X to
describe x(t) for network calculations

Why? Because the term ejωt cancels out, whenever multiplying two
complex quantities(

Vejωt
)(

Iejωt
)∗

= V I∗ejωte−jωt = V I∗,

where the operator ∗ denotes complex conjugation
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2 Visualization of a phasor

V = Vejθ = V θ︸ ︷︷ ︸
angular form

c©J. Corda

starting from the origin 0 + j0

projection on the real axis is 1√
2
v(t)

the phasor is the position at t = 0 of the rotating vector
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2 Phasor diagrams

Phasor diagrams (φασικά διαγράμματα): A graphical representation of
the phasors

V

ω

O

ϕv

I
ϕi
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3 Complex apparent power in single-phase systems

Now, we can introduce a third important quantity in power systems - the
complex apparent power

S = V I∗ = VIej(ϕv−ϕi ) = VIejϕ = VI(cos(ϕ) + j sin(ϕ))

Remember that ϕ = ϕv − ϕi is called the power factor angle and it’s
connected to power factor as PF = cosϕ

The absolute value of the complex apparent power is called apparent
power S

S = |S| = VI

The unit of S and S is Volt-Ampere [VA]

Apparent power used to dimension equipment

S = VI ⇒ S = P if ϕ = 0
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3 Relation between S, P and Q

Active power P corresponds to real part of S

P = <{S} = VI cos(ϕ)

Reactive power Q corresponds to imaginary part of S

Q = ={S} = VI sin(ϕ)

Hence
S = P + jQ

and
S = |S| =

√
P2 + Q2

p(t), P Watt W kW, MW

Q Var (VAr, Var, var) kvar, Mvar

S Volt-Ampere VA kVA, MVA
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3 Power triangle in the complex plane

=

<

Q

P

S

ϕ

Power factor

cos(ϕ) =
P
|S| =

P√
P2 + Q2
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3 Power conventions

For network calculations, it is important to determine whether an
element absorbs or delivers power

There are 2 conventions:

Load convention (standard)

v(t)

i(t)

Current counted positively if enters
circuit element ”by head” of
voltage arrow

Generator convention

v(t)

i(t)

Current counted positively if
leaves circuit element ”by head” of
voltage arrow
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3 Load convention
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3 Generator convention
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3 Generator convention
The power factor can be also defined for generators:

cosϕ =
Pg√

P2
g + Q2

g v(t)

i(t)

a generator can produce or absorb reactive power

whether it absorbs or consumes is not shown by the power factor

hence, sometimes the value of the power factor is followed by
”inductive” if reactive power is produced (the generator feeds an inductive
load)

”capacitive” if reactive power is consumed (the generator feeds a capacitive
load)

less ambiguous:

tanϕ =
Qg

Pg
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3 Example: Active and reactive power calculation

V = 1 0 I = 0.5 −π6 ω = 2π50 = 314 rad/s

Task.
Given the above phasors, write the time-domain sinusoidal equations.

Compute the power factor angle, power factor, active, reactive, and
apparent powers.
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3 Example: Active and reactive power calculation

Solution.
(On board)

v(t) =
√

2V cos(ωt) =
√

2 cos(ωt) i(t) =
√

20.5 cos
(
ωt − π

6

)

ϕ =
π

6
cos(ϕ) = 0.866

P = VI cos(ϕ) = 0.5 · 0.866 = 0.433

Q = VI sin(ϕ) = 0.5 · 0.5 = 0.25

S = VI = 0.5 =
√

P2 + Q2
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3 Example: Instantaneous power of ohmic-inductive load

V̂ cos(ωt)

i(t)

L

iL(t)

R

iR(t)

Task.
Given the above electrical network and waveform characteristics,
calculate the stationary power consumption of the resistor together with
the inductor.

At first, use the time domain expressions for v and i . Then use the
phasors V and I.

Determine the power factor of the circuit.
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3 Example: Instantaneous power of ohmic-inductive load

Solution.
(On board)

1) Using time domain expressions
From KCL

i(t) = iR(t) + iL(t) =
V̂
R

cos(ωt) +
V̂
ωL

cos
(
ωt − π

2

)
Hence, instantaneous power

p(t) = v(t) · i(t) =
V̂ 2

R
cos2(ωt) +

V̂ 2

ωL
cos
(
ωt − π

2

)
cos(ωt)

=
1
2

V̂ 2

R
(1 + cos(2ωt)) +

1
2

V̂ 2

ωL
sin(2ωt)

=
V 2

R
(1 + cos(2ωt))︸ ︷︷ ︸

pR (t)

+
V 2

ωL
sin(2ωt)︸ ︷︷ ︸
pL(t)

Note: instantaneous power consists of two components - power on
resistance pR(t) and power on inductance pL(t)
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3 Example: Instantaneous power of ohmic-inductive load

Solution.
(On board)

From previous considerations, we have that active and reactive power are
given by

P =
V 2

R
, Q =

V 2

ωL
=

V 2

XL

2) Using phasors

Complex current

I =
V
Z

= V
(

1
R

+
1

jωL

)
Complex apparent power (setting V = V 0◦)

S = V I∗ = V V ∗
(

1
R

+ j
1
ωL

)
=

V 2

R
+ j

V 2

ωL

Active and reactive power

P = <(S) =
V 2

R
, Q = =(S) =

V 2

ωL
=

V 2

XL
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3 Example: Instantaneous power of ohmic-inductive load

Solution.
(On board)

Note:

Q = =(S) =
V 2

ωL
=

V 2

XL
> 0

→ Inductance ”consumes” reactive power

Power factor
cos(ϕ) =

P
S

We have that

S = V 2

√
1

R2 +
1

X 2
L

Thus

cos(ϕ) =
P
S

=
V 2

R
1

V 2
√

1
R2 + 1

X2
L

=
1√

1 + R2

X2
L

Question: Does the PF depend on the voltage in this case?
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3 Power expressions for one-ports with a single element

V

I

(On board)

Resistance R Inductance L Capacitance C

ϕ 0 π
2 −π2

P RI2 = V 2

R 0 0

Q 0 ωLI2 = V 2

ωL − I2
ωC = −ωCV 2

→ Inductor ”consumes” reactive power; power factor of inductive load is
said to be lagging, because current lags voltage (ϕ > 0)

→ Capacitor ”produces” reactive power; power factor of capacitive load is
said to be leading, because current leads voltage (ϕ < 0)
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3 Complex impedance and admittance

Inductive reactance (επαγωγική αντίδραση) X = ωL [Ω]

Capacitive reactance (χωρητική αντίδραση) X = − 1
ωC [Ω]

Complex impedance (σύνθετη αντίσταση)

Z = R + jX [Ω]

Complex admittance (σύνθετη αγωγιμότητα)

Y =
1
Z

=
1

R + jX
=

1
R + jX

· R − jX
R − jX

=
R

R2 + X 2 + j
−X

R2 + X 2

= G + jB [S]

G = R
R2+X2 [S] is called conductance (αγωγιμότητα)

B = −X
R2+X2 [S] is called susceptance (επαγωγική ή χωρητική

επιδεκτικότητα)

S=siemens; SI unit of conductance, susceptance and admittance
,
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3 Power expressions for one-ports described by a complex
impedance

Z V

I

Via impedance Via admittance

V = Z I I = Y V

Z = R + jX Y = G + jB

S = V I∗ = Z I I∗ = ZI2 S = V I∗ = V (Y V )∗ = Y ∗V 2

P = <{S} = RI2 P = <{S} = GV 2

Q = ={S} = XI2 Q = ={S} = −BV 2
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3 Practical implications of the power factor cos(ϕ)

cos(ϕ) = P
|S| = P√

P2+Q2
= P

VI

⇔ I = P
V cos(ϕ)

→ For the same useful power P and a fixed voltage V , the smaller the
power factor cos(ϕ) the larger the current I

Or, equivalently, the larger the phase angle between the voltage and
current waveforms, the smaller the power factor

This has important practical implications!

For the same useful power P and a fixed voltage V , the larger the
reactive power consumed or produced by the load

the larger the current I

need lines of higher current capacity→ more costly investment!

get higher losses RI2 in the lines→ more costly operation!
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3 Reactive power compensation (1)

Most loads consume reactive power

Frequent solution: try to bring power factor closer to 1 by producing
reactive power close to (or directly at) the load

(On board)

R

L

I

V

cos(ϕ) =
P√

P2 + Q2
=

RI2

√
R2I4 + ω2L2I4

=
R√

R2 + ω2L2
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3 Reactive power compensation (2)

Reactive power compensation by adding capacitor in parallel to load

Ideal compensation: reactive power QC produced by capacitor is equal
to reactive power QL consumed by load

(On board)

R

L

I

V C

QC = −ωCV 2, QL = ={SL} = −BV 2 =
ωL

R2 + (ωL)2 V 2

⇒ C =
L

R2 + (ωL)2
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3 Reactive power compensation (3)

The approach on the previous slide only works perfectly if the load is
constant, which is usually not the case

→ Compensation has to be adjusted with load variation!

This can be done with so-called capacitor banks, that can insert or
remove capacitors from the circuit by on-/off-switching of breakers

For large loads with fast-varying demands (e.g. industrial loads), faster
power-electronics based devices are needed

Be careful not to overcompensate! That can also cause harm!

,
ΕΕΝ320 — Dr Petros Aristidou — Last updated: January 17, 2020 42/ 84



4 Conservation of complex apparent power

Theorem of conservation of complex apparent power

Consider an electrical circuit with multiple sources and sinks that are all
independent of each other

Suppose that all voltages and currents in the circuit a purely sinusoidal
and of the same frequency

Then the sum of the apparent powers of the sources is equal to the sum
of the apparent powers of the sinks

For single source, proof of the theorem follows from Kirchhoff’s laws. For the
general case, proof is more complicated.
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4 Implications of theorem

Helpful in analysis of large networks (for example: allows to replace
complete networks by their Thevenin equivalents)

V b,i

Ib,i

I1

S1 = V 1 I∗1

V 1

I3

S3 = V 3 I∗3

V 3

I2

S2 = V 2 I∗2

V 2

S1 + S2 + S3 =
∑

i

Sb,i

Important implication for electric power systems:

Sum of power injected in network
= sum of consumption of all loads + sum of losses in all network
elements

Not obvious for reactive power!
,
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4 Example: Conservation of complex apparent power

I1

Z

V I I2

S1 S S2V 1 V 2

Task.
Given that Z = R + jX , verify that S1 + S2 = S !
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4 Example: Conservation of complex apparent power
Solution.
(On board)

Complex power at input-port 1

S1 = V 1 I∗1 = P1 + jQ1

Complex currents
I1 = −I2 = −I

Voltage at output-port 2
V 2 = V 1 + Z I

Complex power at output-port 2

S2 = V 2 I∗2 = V 2 I∗ = (V 1 + Z I)I∗

= V 1 I∗ + Z |I|2 = (−P1 + R|I2|)︸ ︷︷ ︸
P2

+j (−Q1 + X |I|2)︸ ︷︷ ︸
Q2

Hence,
S1 + S2 = R|I2|+ jX |I|2 = S

→ Input- and output-powers differ exactly by power consumed by impedance
Z
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5.1 Balanced three-phase AC waveform

Balanced three-phase AC waveform = 3-dimensional vector the
elements of which are AC waveforms at the same frequency and with
the same amplitude, but shifted by 120◦ (equivalently, 2π/3 rad) with
respect to each other

Example: balanced three-phase voltage

vabc(t) =
√

2V

 sin(ωt + θ)

sin
(
ωt + θ − 2π

3

)
sin
(
ωt + θ − 4π

3

)


0 10 20 30 40

−1

0

1

t [ms]

va(t)
vb(t)
vc(t)
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5.1 Phasor diagram balanced three-phase AC waveforms

V a

V c

V b

ω

O

θ

Ia

Ic

Ib

ψ

Observer in ”O” sees voltage and current phasors rotating at speed ω
passing in order a, b, c

The phase sequence a− b − c is called positive or direct sequence

In balanced case: V a + V b + V c = 0, Ia + Ib + Ic = 0
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5.1 Balanced three-phase circuit

Balanced three-phase circuit = assembly of three identical circuits

Each circuit is called a phase

Example:

Ia

Z

Phase a

a′a
Ib

Z

Phase b

b′b
Ic

Z

Phase c

c′c

,
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5.1 Balanced three-phase AC system

Balanced three-phase AC system = balanced three-phase circuit, which
is fed by balanced AC voltages (respectively currents)

Three-phase AC systems are the predominant electrical systems used
for power generation, transmission and distribution worldwide

Example:
Ia

Z

Phase a

a′a
Ib

Z

Phase b

b′b
Ic

Z

Phase c

c′c

V a = V (θ)

V b = V (θ − 2π
3 )

V c = V (θ − 4π
3 )
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5.1 A more efficient connection
Common approach in practice: merge return conductors aa′, bb′, cc′

into a single conductor

The conductor N − N ′ is called neutral conductor (Ουδέτερος αγωγός)
and N and N ′ are called neutrals

N

V a

V c

V
b

N ′

Phase a

Phase c

Phase b

(On board)

Advantage: can transmit 3 times more current than in single-phase
system with less than 2/3 of required conductor material of 3 single
phase systems (4 instead of 6 and the neutral conductor has usually a
smaller radius than the phase conductors)
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5.2 Balanced Y-connection

In balanced operation: all neutrals are at same voltage

→ Return conductor carries no current and is therefore often removed from
circuit diagram (Ia + Ib + Ic = 0 )

N

V a

V c

V
b

N ′

Phase a

Phase c

Phase b

Chassis ground = reference potential (not necessarily earth)
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5.2 Phase and line voltages

In three-phase systems, we can find two different types of voltages
Phase voltages between phase and neutral V a, V b, V c

Line voltages between different phases (lines) V ab, V bc , V ca

The voltage indicated at the terminal of a three-phase element is the
RMS value of the line voltage (unless otherwise specified)!
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5.2 Phasor diagram for phase and line voltages

V a
aV c

c

V b

b

V ab

V ca

V bc

Voltages between phases and neutral: V a, V b, V c
→ phase-to-neutral or phase voltages

Voltages between individual phases:
V ab = V a − V b, V bc = V b − V c , V ca = V c − V a
→ line-to-line or line voltages
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5.2 Relation between phase and line voltages

(On board)

V ab = V a − V b = V (θ)− V (θ − 2π
3

) = V
(

ejθ − ej(θ− 2π
3 )
)

= V
(

cos(θ) + j sin(θ)−
(

cos(θ − 2π
3

) + j sin(θ − 2π
3

)

))
= V

(
cos(θ) + j sin(θ)−

(
cos(θ) cos(

−2π
3

)− sin(θ) sin(−2π
3

)
)

− j
(

sin(θ) cos(
−2π

3
) + cos(θ) sin(

−2π
3

)
))

= V
(

cos(θ) + j sin(θ)−
(
−1

2
cos(θ) +

√
3

2
sin(θ)

)
− j
(
−1

2
sin(θ)−

√
3

2
cos(θ)

))
= V

(
3
2

cos(θ)−
√

3
2

sin(θ) + j(
3
2

sin(θ)−
√

3
2

cos(θ))

)
=
√

3V
(√

3
2

cos(θ)− 1
2

sin(θ) + j(
√

3
2

sin(θ)− 1
2

cos(θ))

)
=
√

3V
(

cos(
π

6
) cos(θ)− sin(

π

6
) sin(θ) + j(cos(

π

6
) sin(θ)− sin(

π

6
) cos(θ))

)
=
√

3V
(

cos(θ +
π

6
) + j sin(θ +

π

6
)
)

=
√

3V (θ +
π

6
)
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5.2 Relation between balanced phase and line voltages (1)

There is an easier way!

From phasor diagram:

V a

aV c

c

120◦

V ca

Isosceles triangle (triangle that has two sides of equal length):

|V ca| = |V c − V a| = 2 sin

(
120
2

)
V = 2

1
2

√
3V =

√
3V

⇒ In balanced case, for any line voltage V LL and any phase voltage V LN , it
holds that

|V LL| =
√

3|V LN |

(RMS value of line voltage =
√

3 × RMS value of phase voltage)
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5.2 Relation between balanced phase and line voltages (2)

From phasor diagram:

V a

aV c

c

120◦

V ca

Sum of angles of a triangle=180◦ ⇒ phase shift between V c and V ca is
30◦

Hence, we have the following relation between phase and line voltages

V ab =
√

3V aej π6 , V bc =
√

3V bej π6 , V ca =
√

3V cej π6

When specifying the voltage at the terminal of a three-phase device,
unless otherwise specified, it is the effective (or RMS) value of the line
voltages.
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5.2 Y- and Delta-connections

Y-connection

Z Y

Ia

a

Ic
Z Y

c Ib

Z Y

b

Voltages across impedances are
phase voltages V a, V b, V c

Y-connection also called
star-connection or
wye-connection

Delta-connection

a
Ia

Iac

Z ∆

c

Z ∆

Iab

Z ∆

b

Voltages across impedances are
line voltages V ab, V bc , V ac

Delta-connection also called
∆-connection
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5.2 Line and load currents in Delta-connection
In Delta-connection

Ia = Iab + Iac =
V ab + V ac

Z ∆

=
V ab − V ca

Z ∆

From phasor diagram: V ca lags V ab by 240◦, or equivalently, 4π/3 rad
(On board)

Ia =
V ab − V abe−j 4π

3

Z ∆

=
V ab

Z ∆

(
1− e−j 4π

3

)
=

V ab

Z ∆

(
1− cos

(
−4π

3

)
−
(

j sin

(
−4π

3

)))
=

V ab

Z ∆

(
1 + 0.5− j0.5

√
3
)

=
V ab

Z ∆

√
3
(

cos
(
−π

6

)
+ j sin

(
−π

6

))
=

V ab

Z ∆

√
3e−j π6 = Iab

√
3e−j π6

Ia = Iab

√
3e−j π6

⇒ In Delta-connection, the line currents Ia, Ib, Ic are
√

3 times higher than
the load currents Iab, Iac , Ibc through the impedances Z ∆ and lag by 30◦,
or equivalently, π/6 rad
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5.2 Delta-Y-transformation

Loads may be connected either in Y- or Delta-connection

For circuit analysis, usually one needs to transform Delta-connected
loads to equivalent Y-connected loads

Thereby, the RMS values of the phase currents Ia, Ib, Ic flowing into the
load circuits have to remain the same if V ab, V bc , V ac are the same

In Delta-connection

Ia =
V ab

√
3e−j π6

Z ∆

In Y-connection

Ia =
V a

Z Y
=

V abe−j π6
√

3Z Y

⇒ Z ∆ = 3Z Y
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5.2 Practical remarks
Loads can be single- or three-phase loads (depending on their power
demand)

Single-phase loads can be connected either in branches of Y- or
Delta-connection depending on their required voltage

In Cyprus: for most consumers, three-phase power supply at 400V (line
voltage)/230V (phase voltage)

Appliances designed to work at 230V placed between a phase and neutral

Houses may be connected in single- or three-phase (in Cyprus mostly
single-phase)

At one feeder, diverse single-phase appliances/houses connected to
different phases so that overall the load is balanced as good as possible;
this works never perfectly→ nonzero neutral current

However, as the number of loads increases, the phase currents increase
and the neutral current becomes negligible

→ From transmission network, most loads can be considered to be
balanced
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6 Instantaneous power in balanced three-phase
systems (1)

Balanced three-phase voltage and current

vabc(t) =
√

2V

 sin(ωt)

sin
(
ωt − 2π

3

)
sin
(
ωt − 4π

3

)
 iabc(t) =

√
2I

 sin(ωt − ϕ)

sin
(
ωt − ϕ− 2π

3

)
sin
(
ωt − ϕ− 4π

3

)


Instantaneous three-phase power

p(t) = va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t) =
∑

i=a,b,c

pi (t)

From lecture on power in single-phase systems, we know that for
V a = V 0 and I = I (− ϕ) the instantaneous power in phase a is

pa(t) = VI cos(ϕ)(1 + cos(2ωt)) + VI sin(ϕ) sin(2ωt)

= Pa(1 + cos(2ωt)) + Qa sin(2ωt)
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6 Instantaneous power in balanced three-phase
systems (2)

p(t) = va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t)
(On board)

p(t) =va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t)

=3VI cos(ϕ)

+ VI cos(ϕ)

(
cos(2ωt) + cos

(
2
(
ωt − 2π

3

))
+ cos

(
2
(
ωt − 4π

3

)))
︸ ︷︷ ︸

=0

+ VI sin(ϕ)

(
sin(2ωt) + sin

(
2
(
ωt − 2π

3

))
+ sin

(
2
(
ωt − 4π

3

)))
︸ ︷︷ ︸

=0

= 3VI cos(ϕ)

= 3Pa

No fluctuating component in p(t)!

This means that the oscillating components in each pi (t) compensate
each other at each instant in time
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6 Complex three-phase AC power

Under balanced conditions, the complex three-phase AC power is
defined as (On board)

S3φ = V aI∗a + V bI∗b + V c I∗c

= V aI∗a + V ae−j 2π
3 I∗aej 2π

3 + V ae−j 4π
3 I∗aej 4π

3

= 3V aI∗a
= 3VIejϕ

= 3VI cos(ϕ) + j3VI sin(ϕ)

= 3Pa + j3Qa [VA]

Three-phase active power: P3φ = <{S3φ} = 3VI cos(ϕ) = 3Pa [W]

Three-phase reactive power: Q3φ = ={S3φ} = 3VI sin(ϕ) = 3Qa [Var]

Under stationary and balanced conditions, total three-phase active power
transmitted over a three-phase element is constant!
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6 Complex three-phase AC power using line voltages

Complex three-phase power

S3φ = 3V LN I∗L = 3VIejϕ = 3VI cos(ϕ) + j3VI sin(ϕ)

With
√

3V LN = V LL and |
√

3V LN | = |V LL| =
√

3V = U

S3φ =
√

3V LLI∗L =
√

3UI cos(ϕ) + j
√

3UI sin(ϕ)

These formulae are “hybrid” in so far as:
VLL is the effective value of the line voltage

ϕ is the phase angle between the line current and the phase-to-neutral
voltage.

Three-phase active power: P3φ = <{S3φ} =
√

3UI cos(ϕ)

Three-phase reactive power: Q3φ = ={S3φ} =
√

3UI sin(ϕ)
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6 Remark on three-phase reactive power

There is no oscillating component in S3φ

→ Three-phase reactive power Q3φ is an artificial quantity

Only single-phase reactive power has straightforward physical
interpretation (in passive circuits)

However, notion of three-phase reactive power used worldwide to
establish analogy of three-phase complex power and single-phase
complex power
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6 Example: Power in balanced three-phase system

Task. Consider a three-phase load supplied by a 6 kV three-phase voltage
source. Suppose the load current per phase is IL = 2 (− 10◦) A (phase shift
compared to the voltage). Determine the power consumption of the load.
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6 Example: Power in balanced three-phase system

Solution.
(On board)

Complex three-phase power

S3φ = 3V LN I∗L = 3VIejϕ = 3VI cos(ϕ) + j3VI sin(ϕ)

In three-phase systems voltage amplitudes usually given for line voltages

Calculate phase voltage (choose voltage angle as 0◦)

V LN =
6√
3

0◦ = 3.46 kV

Thus,

S3φ = 3 · 3.46 · 2 10◦ = 20.76ej10◦

= 20.76 (cos(10◦) + j sin(10◦)) = 20.44 + j3.60 kVA

Note: alternatively, we could have used the power formula for the line
voltages

S3φ =
√

3V LLI∗L
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7 Per phase analysis (ανά φάση ανάλυση)

Balanced three-phase system: phenomena in all 3 phases identical

Voltages and currents in phases b and c merely shifted by ±2π/3 rad

→ Analyse three-phase circuit by equivalent single-phase circuit

This requires the following steps:
Replace all Delta-connected elements by their equivalent Y-connected
representation

Draw single-phase equivalent circuit for phase a

Conduct circuit analysis by using the equivalent single-phase circuit for
phase a

Corresponding values for phases b and c obtained by adding ±2π/3 to
values in phase a

Note: under balanced conditions all neutrals have the same potential!
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7 Per phase analysis - Example: Three-phase circuit

V
b L c d R

a e

C
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7 Per phase analysis - Example: Delta-Y-transformation

c d

C

c d

f

3C

Capacitors in Delta-connection
need to be transformed into
equivalent Y-connection

Z ∆ = 3Z Y

Z C = jXC =
1

jωC

⇒ Z C,Y =
1
3

Z C,∆ =
1

jω3C

Need 3 times higher capacitance
in Y-connection!
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7 Per phase analysis - Example: Single-phase equivalent
circuit

a

V

b L c d

R

ef

3C

Neutrals a, f and e are all on same potential
→ can use single return conductor
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7 Per phase analysis - Numerical example

V
b L1 c d L2

vL2(t)

a

LR

eiC(t)

C

In the diagram above, it is given that va(t) = 350 cos(ωt + 45◦) V , with
frequency f = 50 Hz, L1 = 0.318 mH, L2 = 3.18 mH, C = 1.592 mF ,
R = 1 Ω, L = 0.0318 mH.

Task.
Find vL2(t) and iC(t).
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7 Per phase analysis - Numerical example

Solution.
(On board)

Since it’s symmetrical we do per phase analysis.

Ea =
350√

2
45◦ XL1 = jωL1 = j314 · 0.318 · 10−3 ≈ j0.1Ω

XL2 = jωL2 = j314·3.18·10−3 ≈ j1Ω XL = jωL = j314·0.0318·10−3 ≈ j0.01Ω

XC =
−j
ωC

=
−j

314 · 1.592 · 10−3 = −j2Ω XCY = −j
2
3

a

Ea

b j0.1Ω c d

j1ΩvL2(t)

ef

−j 2
3 Ω
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7 Per phase analysis - Numerical example

(On board)

Ztot =
j1 · (−j2/3)

j1− j(2/3)
= −j2Ω

V2 =
−j2

−j2 + j0.1
Ea = 1.05Ea =

368√
2

45◦V

vL2(t) = 368 cos(ωt + 45◦)V

ICY =
V2

XCY
=

368√
2

45◦

−j2/3
=

368√
2

45◦

(2/3) −90◦
=

552√
2

135◦A

IC =
ICY√

3 −30◦
=

319√
2

165◦A

ic(t) = 319 cos(ωt + 165◦)A
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7 Standard one-line diagram (μονογραμμικό διάγραμμα)

M

L1

4
T2T1

321

G

5

L2

Generator

Transformer

Load

Power line
Motor

Bus

In switching stations, power lines (γραμμές μεταφοράς), cables,
transformers (μετασχηματιστές), generators (γεννήτριες), loads (φορτία),
etc. are connected to each other via buses (or busbars)

Bus (ζυγός) = equipotential metallic assembly
,
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8 Advantages of three-phase over 3 single-phase
systems (1)

Need less conductors:
3 instead of 6 if no neutral conductor used (three-wire Y-connection)

4 instead of 6 if neutral conductor is present (four-wire Y-connection, more
common)

Neutral conductor used to reduce overvoltages (e.g., when switching lines
on and off) and carry unbalanced currents (e.g., in case of single-phase
short-circuit)

On transmission level: neutral currents small→ can dimension neutral
conductor much smaller than phase conductor

Under balanced operation: No current flowing in return (neutral)
conductor
→ Only half of line losses I2R

→ Only half of line-voltage drop between source and load
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8 Advantages of three-phase over 3 single-phase
systems (2)

Under balanced conditions, total instantaneous electrical power
delivered by three-phase generator is (nearly) constant

p(t) = 3VI cos(ϕ)

→ Also almost constant mechanical input

Equation for instantaneous electrical power delivered by single-phase
generator identical to that of instantaneous power in one phase:

p(t) = VI cos(ϕ)(1 + cos(2ωt)) + VI sin(ϕ) sin(2ωt)

Double-frequency components create shaft vibration and noise

→ Could lead to failures in large machines

Therefore most electric generators and loads rated > 5 kVA are
constructed as three-phase machines
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8 Summary

Single-phase systems: power oscillates with 2ω, where ω is the
stationary network frequency

Balanced three-phase systems: oscillating power components in
individual phases compensate each other→ resulting three-phase
power is constant over time

Complex apparent power is product of voltage and complex conjugate
current

S = V I∗ = VI cos(ϕ) + jVI sin(ϕ) = P + jQ

Real part P of S is active power

Imaginary part Q of S is reactive power

For circuit calculations of single- and balanced three-phase systems, the
same equations apply (per phase analysis)

Three-phase complex apparent power under balanced conditions

S3φ = 3V I∗
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