EEN320 - Power Systems I (Συστήματα Ισχύος I)
Part 4: The per-unit system

Dr Petros Aristidou
Department of Electrical Engineering, Computer Engineering & Informatics
Last updated: February 10, 2020
Today’s learning objectives

After this part of the lecture and additional reading, you should be able to . . .

1. . . . explain the use and advantages of the per unit system in power system computations;

2. . . . convert physical quantities to their corresponding per unit values;

3. . . . calculate stationary network conditions using the per unit system.
1. Principle and advantages

2. Introduction of per unit quantities via an example

3. Conversion between different per unit systems

4. Choice of base values in power systems with several zones
1 Outline

1 Principle and advantages

2 Introduction of per unit quantities via an example

3 Conversion between different per unit systems

4 Choice of base values in power systems with several zones
1 Principle of ”per unit” system

- Usual representation of physical quantities as product of numerical value and physical unit, e.g.
 \[V = 400 \text{ kV} \]

- Alternative: representation of the quantity *relative* to another (base) quantity

 \[
 \text{value of quantity in pu} = \frac{\text{value of quantity in physical unit}}{\text{value of corresponding ”base” in same unit}}
 \]

- Division by ”base” eliminates physical unit

 → per-unit (pu) system

- Example: base value for voltage \(V_{\text{base}} = 400 \text{ kV} \)
 (On board)
1 Advantages (1)

- Appropriate choice of base values gives pu-values very useful meaning
 - Example: express bus voltage V relative to nominal grid voltage V_{base} and suppose that
 \[v = 0.93 \text{ pu} \]
 \[\rightarrow \text{We see immediately that value of } v \text{ is 7\% below nominal voltage} \]
 - This is much easier to see than by looking at the absolute value $V = 372.03 \text{ kV}$

- Better conditioning of numerical computations
 - Under normal operating conditions, voltage values in pu are close to 1
 - Networks of different dimensions and voltage levels can be represented in same order of magnitude
 - Example: 100 MVA = 1 pu for large networks and 1 MVA = 1 pu for small networks
1 Advantages (2)

- Easier comparison of components of different power ratings
 - Consider two transformers and suppose that their currents are indicated in pu with respect to their respective maximum currents

 Suppose that $i_1 = 0.99$ pu and $i_2 = 0.35$ pu

 - We see immediately that transformer 1 is operating much closer to its limit than transformer 2

 - In general, parameters of similar devices have similar pu values, independently of their power rating (as long as the values are referred to that rating)

 → Can check quickly if data of a component/machine is within usual range

- Ideal transformer present in real transformer model is eliminated in the equivalent per-unit circuit (see example later)
2 Outline

1 Principle and advantages

2 Introduction of per unit quantities via an example

3 Conversion between different per unit systems

4 Choice of base values in power systems with several zones
2 Exemplary circuit

It holds that

\[X_L = \omega L \quad X_C = \frac{1}{\omega C} \quad \frac{1}{j\omega C} = -j\frac{1}{\omega C} = -jX_C \]

From KVL we have that

\[V = RL + jXL - jXC \]

Goal: Represent variables in pu system

First question: How to choose base quantities?
2 Exemplary circuit - Choice of base values

- Basic relations in stationary power systems
 \[\mathcal{S} = V I^*, \quad V = Z I \]

→ Can choose two independent base quantities

- Other base values are obtained using fundamental laws for electric circuits

- Typical choice of base quantities
 1) Base power \(S_B \)
 2) Base voltage \(V_B \)

- Note 1: base values are always real numbers!

- Note 2: usual numbers of base values correspond to nominal (power and voltage) ratings of the circuit
Introduce base voltage V_B

Then the per unit representation of V is obtained as

$$v = \frac{V}{V_B}$$

Then

$$v = \frac{V}{V_B} = \frac{RI}{V_B} + \frac{jX_L I}{V_B} - \frac{jX_C I}{V_B}$$

Example: rated voltage of circuit is 110 kV

→ Choose $V_B \approx 110$ kV
2 Exemplary circuit - Base power

- Introduce (single-phase) base power $S_{B1\phi}$

$$S_{B1\phi} = V_B I_B = \frac{V_B^2}{Z_B}$$

- Then the per unit representation of S is obtained as

$$s = \frac{S}{S_{B1\phi}}$$

- And the base values for currents and impedances follow from the relations

$$I_B = \frac{S_{B1\phi}}{V_B} \quad Z_B = \frac{V_B}{I_B} = \frac{V_B^2}{S_{B1\phi}}$$

- Per unit representation of current and impedance

$$i = \frac{I}{I_B} \quad z = \frac{Z}{Z_B}$$
For the voltage in per unit we had the relation

\[\frac{v}{V_B} = \frac{R}{V_B} I + \frac{jX_L}{V_B} I - \frac{jX_C}{V_B} I \]

By expressing the current in per unit via

\[i = \frac{I}{I_B} \]

we obtain

\[\frac{v}{V_B} = \frac{R I_B}{V_B} i + \frac{jX_L I_B}{V_B} i - \frac{jX_C I_B}{V_B} i \]
Recall that base impedance is given by

\[Z_B = \frac{V_B}{I_B} \]

Base impedance \(Z_B \) is base value for both real and complex impedances.

Hence

\[r = \frac{R}{Z_B} = \frac{RI_B}{V_B} \]

\[x_L = \frac{X_L}{Z_B} = \frac{X_L I_B}{V_B} \]

\[x_C = \frac{X_C}{Z_B} = \frac{X_C I_B}{V_B} \]

We obtain

\[v = \frac{V}{V_B} = \frac{RI_B}{V_B} i + \frac{jX_L I_B}{V_B} i - \frac{jX_C I_B}{V_B} i \]

\[= r i + jx_L i - jx_C i \]
By introducing the overall impedance

\[Z = R + j(X_L - X_C) \]

and its per unit representation

\[z = \frac{Z}{Z_B} = r + j(x_L - x_C) \]

we obtain the compact representation in pu

\[v = z \cdot i \]
2 Per unit quantities - Summary

1. Choose two base quantities, e.g. S_B and V_B

 S_B can be either single- or three-phase power

 \[S_{B3\phi} = 3 S_{B1\phi} \]

2. Other values obtained via electrical laws

 Base current $I_B = \frac{S_{B1\phi}}{V_B} = \frac{S_{B3\phi}}{3V_B} = \frac{S_{B3\phi}}{\sqrt{3}U_B}$

 \[U_B = \sqrt{3} V_B \]

 Base impedance $Z_B = \frac{V_B}{I_B} = \frac{V_B^2}{S_{B1\phi}} = \frac{3V_B^2}{S_{B3\phi}} = \frac{U_B^2}{S_{B3\phi}}$

 Base admittance $Y_B = G_B = B_B = \frac{1}{Z_B}$

 - V_B and I_B are always RMS values per phase!

 - In non-stationary conditions usually frequency and/or time are also normalised
3 Outline

1. Principle and advantages

2. Introduction of per unit quantities via an example

3. Conversion between different per unit systems

4. Choice of base values in power systems with several zones
3 Conversion between different per unit systems

• In practice, it is often necessary to convert values from one per unit system to another one

• Example: machine parameters are given in per unit values with respect to machine rating and we want to convert them into per unit values with respect to base values of power system to which machine is connected

• This can be done as follows

 Per unit value wrt first base:
 \[x_1 = \frac{X}{X_{B,1}} \]

 Per unit value wrt second base:
 \[x_2 = \frac{X}{X_{B,2}} \]

 Hence:
 \[X = x_1 X_{B,1} = x_2 X_{B,2} \]

→ Conversion from base 1 to base 2:

\[x_2 = x_1 \frac{X_{B,1}}{X_{B,2}} \]
Conversion of an impedance Z from base "old" to base "new"

- **Per unit value wrt first base:**

 \[
 Z_{\text{old}} = \frac{Z}{Z_B} = \frac{Z S_{B1\phi}^{\text{old}}}{(V_B^{\text{old}})^2} \quad Z_B = \frac{(V_B^{\text{old}})^2}{S_{B1\phi}^{\text{old}}}
 \]

- **Per unit value wrt second base:**

 \[
 Z_{\text{new}} = \frac{Z}{Z_B} = \frac{Z S_{B1\phi}^{\text{new}}}{(V_B^{\text{new}})^2} \quad Z_B = \frac{(V_B^{\text{new}})^2}{S_{B1\phi}^{\text{new}}}
 \]

- Conversion from base "old" to base "new"

 \[
 Z_{\text{new}} = Z_{\text{old}} \frac{Z_B^{\text{old}}}{Z_B^{\text{new}}} = Z_{\text{old}} \frac{S_{B1\phi}^{\text{new}}}{S_{B1\phi}^{\text{old}}} \left(\frac{V_B^{\text{old}}}{V_B^{\text{new}}} \right)^2
 \]
Task. A three-phase transformer is rated 400 MVA, $220Y/22\Delta$ kV. The Y-equivalent short-circuit impedance measured on the low-voltage side of the transformer is $0.121 \, \Omega$. Due to the low resistance, this value can be considered to be equal to the leakage reactance of the transformer. Determine the per-unit reactance of the transformer by taking the secondary voltage as base voltage. Determine the per-unit reactance in a system with base values $S_{B3\phi} = 100$ MVA and $V_B = 230$ kV.
3 Example: Conversion between per unit systems (2)

Solution. (On board)
4 Outline

1. Principle and advantages
2. Introduction of per unit quantities via an example
3. Conversion between different per unit systems
4. Choice of base values in power systems with several zones
Example: 3-zone single-phase circuit

- **Zone 1**
 - Generator
 - $V_s = 220/0^\circ$ V
 - 30 kVA
 - $X_{T1} = 0.10$ pu
 - 240/480 V

- **Zone 2**
 - $j2 \, \Omega$
 - 20 kVA
 - $X_{T2} = 0.10$ pu
 - 460/115 V

- **Zone 3**
 - Load
 - $Z_{Load} = 0.9 + j0.2 \, \Omega$

- X_{Ti} ... leakage reactance of transformer, $i = 1, 2$

- Transformer winding resistors and shunt admittances are neglected
4 Choice of base values - General rules

- Power base $S_{B1\phi}$ or $S_{B3\phi}$ is the same for the whole network

- Typical values: $S_{B3\phi} = 100$ MVA in HV networks; $S_{B3\phi} = 1$ MVA in MV networks

- Ratio of voltage bases V_{B1} on either side of a transformer is chosen identical to ratio of transformer voltage rating

$$c = \frac{N_1}{N_2} \quad \rightarrow \quad \frac{V_{B1}}{V_{B2}} = c$$
4 Choice of base values - Consequences for transformer model (1)

\[
\begin{align*}
V_1 & \quad I_1 \quad Z_t \quad I_2 \\
V_2 &
\end{align*}
\]

- Since \(V_1 = cV_2 \), when following the previous rules, we have
 \[
 V_1 = \frac{V_1}{V_{B1}} \quad V_2 = \frac{V_2}{V_{B2}} = \frac{cV_2}{V_{B1}} = \frac{V_1}{V_{B1}} = V_1
 \]

- Likewise, since \(I_2 = cI_1 \) and
 \[
 I_{B1} = \frac{S_B}{V_{B1}} \quad I_{B2} = \frac{S_B}{V_{B2}} = \frac{cS_B}{V_{B1}} \\
i_1 = \frac{I_1}{I_{B1}} \quad i_2 = \frac{I_2}{I_{B2}} = \frac{I_2}{cI_{B1}} = \frac{cI_1}{cI_{B1}} = i_1
 \]
Also, per unit impedance remains unchanged when referred to either side of a transformer

\[
Z_{B1} = \frac{V_{B1}}{I_{B1}} = \frac{V_{B1}^2}{S_B} \quad Z_{B2} = \frac{V_{B2}}{I_{B2}} = \frac{V_{B1}^2}{c^2 S_B}
\]

\[
\frac{Z_1}{Z_2} = c^2 \quad \rightarrow \quad \frac{Z_1}{Z_2} \frac{Z_{B1}}{Z_{B2}} = \frac{Z_1}{Z_2} c^2 = c^2 \quad \rightarrow \quad \frac{Z_1}{Z_2} = 1
\]

→ Turns ratio \(c \) eliminated in equivalent per unit circuit (if base values chosen according to transformer voltage rating)!
4 Example - Three-zone system per-unit calculation

Task.

1. Choose $S_B = 30$ kVA and $V_{B1} = 240$ V and determine the per-unit impedances and per unit source voltage v_s

2. Draw per-unit circuit

3. Calculate load current in per unit and Amperes
4 Example - Voltage bases for Zones 2 and 3

1) (On board)
4 Example - Per unit impedances and source voltage (1)

1) (On board)
4 Example - Per unit impedances and source voltage (2)

1) (On board)
4 Example - Equivalent per unit circuit

2) (On board)
4 Example - Load current

3) (On board)
4 Summary

- Per unit system is frequently used in power system analysis

- Advantages
 - Easy evaluation of equipment status
 - Easy comparison of network status on different voltage levels
 - Better suited values for numerical calculations
 - Turns ratio of transformer eliminated in equivalent per unit circuit