

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5900

EEN320 - Power Systems I (Συστήματα Ισχύος I) Part 8: The transmission line https://sps.cut.ac.cy/courses/een320/

Dr Petros Aristidou Department of Electrical Engineering, Computer Engineering & Informatics Last updated: April 3, 2023

After this part of the lecture and additional reading, you should be able to

- ... name the main components of an overhead line and describe their functionality;
- ... understand how to derive the Π-equivalent circuit of a transmission line;
- ... determine the parameters of the Π-equivalent circuit of a transmission line from its concentrated parameters;
- ... explain how and under which conditions or assumptions the Π-equivalent circuit can be further simplified.

Outline

Physical relevance of power lines

2 Structure of overhead lines

- Conductors
- Support structures
- Insulators
- Shield wires

Our provide the second state of the second

- Inductance
- Capacitance

Overhead line parameters

- Concentrated parameters
- Some brief remarks on cables

5 Equivalent circuits for power lines

- Differential equation of a power line
- Solution of differential equation of a power line
- Π-equivalent circuit
- Model simplifications and their validity

1 Outline

1 Physical relevance of power lines

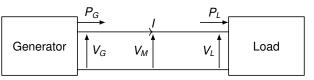
- 2 Structure of overhead lines
- 3 Derivation of lumped inductor and capacitor values
- **4** Overhead line parameters
- 5 Equivalent circuits for power lines

1 Power lines - Overview

- Task: Transport electricity
- 2 main types:
 - Overhead line (OL)
 - Cable
- OLs and cables possess different structure and operational properties
- At same voltage level, costs for cables approx. 10-20 times than costs of OLs
- $\rightarrow~\text{OLs}$ economically more viable option

Overhead power line in Gloucestershire, England ©Yummifruitbat

1 Recap: Motivation for high voltage transmission (1)



Simplified DC transmission system

- Line is resistive \rightarrow voltage drop across line \rightarrow V_G > V_M > V_L
- Average power transmitted over line: $P_{trans} = V_M I$ (V_M is voltage at middle of line length)
- Denote total line resistance by $R \rightarrow$ line losses given by

$$P_{loss} = Rl^2 = R\left(\frac{P_{trans}}{V_M}\right)^2$$

Ratio of power losses to transmitted power

$$\frac{P_{loss}}{P_{trans}} = R \frac{P_{trans}}{V_M^2}$$

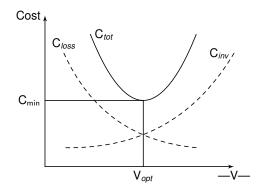
Ratio of power losses to transmitted power

$$\frac{P_{loss}}{P_{trans}} = R \frac{P_{trans}}{V_M^2}$$

 \rightarrow Power losses inversely proportional to square of operational voltage V_M^2

- Power lines usually operated at high voltage
- However, higher voltage means higher insulation of components
- \rightarrow Higher costs

1 Costs vs. transmission voltage



- Total costs C_{tot}=C_{loss}+C_{inv}
- Minimum costs $C_{min} \rightarrow$ economically optimal operating voltage

2 Outline

Physical relevance of power lines

2 Structure of overhead lines

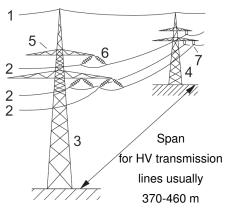
- Conductors
- Support structures
- Insulators
- Shield wires

3 Derivation of lumped inductor and capacitor values

- Overhead line parameters
- 5 Equivalent circuits for power lines

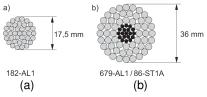
An overhead line consists of

- Conductors (2)
- Support structures
 - Towers (and poles) (3,4)
 - Traverse (5)
- Shield wires (1)
- Insulators (6,7)
 - Strain-type insulator (6)
 - Suspension-type insulator (7)



Source: K. Heuck et al., "Elektrische Energieversorgung", Springer, 2013

- Aluminium is most common conductor metal
- Copper also used, but less frequently as heavier and more expensive
- Mechanical strain acting on conductors limits span between towers (line sag)
- For short lines, conductors of pure aluminium strands may be used (Figure (a))
- For longer lines, conductors are reinforced with central steel strands (Figure (b))



Source: K. Heuck et al., "Elektrische Energieversorgung", Springer, 2013

Strands are usually twisted to reduce Eddy currents

Source: J. Duncan Glover et al., "Power System Analysis & Design", Cengage Learning, 2008

2.1 Conductors - Types

- Common types of conductors
 - Aluminium conductor steel-reinforced (ACSR)
 - All-Aluminium conductor (AAC)
 - All-Aluminium alloy conductor (AAAC)
 - Aluminium conductor composite reinforced (ACCR)
 - Aluminium conductor composite core (ACCC)
- Conductors labeled based on cross section (in mm²) of aluminium and core strand

Example: 243-AL1/39-ST1A (code after AL and ST denotes finishing properties of AL and ST)

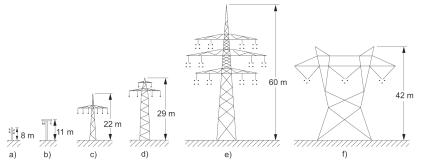
©Dave Bryant Standard round-wire ACSR (left) and ACCC with trapezoidal wires (right)

ACCR and ACCC use carbon and glas fiber core \rightarrow up to 10 times lower thermal expansion coefficient than steel \rightarrow can use more aluminium \rightarrow reduced line losses

- Each phase of a three-phase transmission line consists of one or more conductors
- More than one conductor/phase → bundled conductor
- Advantages:
 - Smaller series resistance
 - Reduced electric field strength at conductor surface → reduced Corona effect
- Transmission line may also consist of several three-phase systems in parallel

Triple-circuit 400 kV overhead line with 4 conductors per phase

2.2 Support structures - Towers and poles

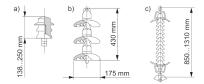


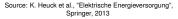
Source: K. Heuck et al., "Elektrische Energieversorgung", Springer, 2013

- Large variety of support structures
- Poles made of wood or concrete [a) and b)] used for voltages \leq 110 kV
- Self-supporting lattice steel towers [c) f)] used for voltages \geq 110 kV

2.3 Insulators

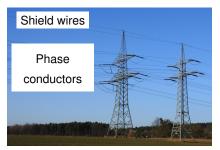
- Need to insulate "live" conductors from tower
- Pin-type insulators (for lower voltages < 60 kV); material: porcelain; Figure (a)
- Suspension-type insulators (for voltages > 60 kV)
 - Suspension disc insulator; material: glas; Figure (b)
 - Long-rod insulator; material: porcelain; Figure (c) (Strain-type insulator some times also used)
- To prevent sparkovers, insulators need to be sufficiently long (approx. 1.5 cm/kV) and possess appropriate shape to minimise leakage currents





110 kV double long-rod suspension string ©Kreuzschnabel

- Shield wires located above phase conductors to provide protection against lightning
- Shield wires are grounded to tower
- $\rightarrow\,$ They also serves as parallel path with Earth for fault currents
- Predominantly used above 110 kV
- Much smaller cross section than phase conductors
- Modern shield wires contain optical fibres for communication/control
- Usually, 1-2 shield wires used



©Kreuzschnabel

3 Outline

Physical relevance of power lines

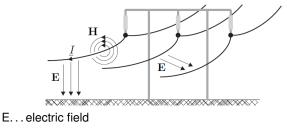
2 Structure of overhead lines

Operivation of lumped inductor and capacitor values

- Inductance
- Capacitance
- Overhead line parameters
- 5 Equivalent circuits for power lines

3 Overhead line model - Electric and magnetic fields

Magnetic and electric fields of conducting power line

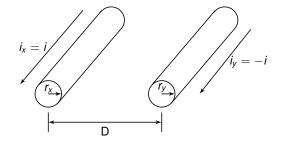


H... magnetic field

- Due to the alternating current, there is an alternating magnetic field in each line affecting neighbouring lines.
- Similarly, there is an electric field between lines and from lines to the ground.
- The parameters of the line model are dictated by the line material (ohmic losses) as well as the magnetic and electric fields.

[©]G. Anderson

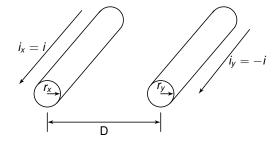
3.1 Inductance of a single-phase two-wire line (1)



- r_x , r_y : radius of cylindrical conductors
- D: spacing between conductors
- *i*: current flowing in conductors
- Assumptions: Conductors are of infinitely length, non-magnetic $(\mu = \mu_0)^1$ and have uniform current density (skin-effect neglected)

 $^{^{1}\}mu_{0}$ is vacuum permeability constant

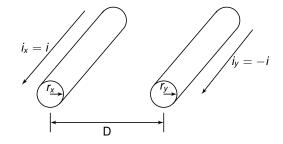
3.1 Inductance of a single-phase two-wire line (2)



• Inductance of one conductor $k = \{x, y\}$

$$L'_{k} = \frac{\mu_{0}}{2\pi} \ln\left(\frac{D}{r'_{k}}\right) = 2 \cdot 10^{-7} \ln\left(\frac{D}{r'_{k}}\right) [\text{H/m}] \qquad r'_{k} = r_{k} e^{-\frac{1}{4}} \approx 0.778 r$$
$$\mu_{0} = 4\pi \cdot 10^{-7}$$

3.1 Inductance of a single-phase two-wire line (3)

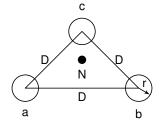


• Total inductance of single-phase two-wire line

$$\begin{aligned} L' &= L'_x + L'_y = 2 \cdot 10^{-7} \left(\ln \left(\frac{D}{r'_x} \right) + \ln \left(\frac{D}{r'_x} \right) \right) \\ &= 2 \cdot 10^{-7} \ln \left(\frac{D^2}{r'_x r'_y} \right) = 4 \cdot 10^{-7} \ln \left(\frac{D}{\sqrt{r'_x r'_y}} \right) [\text{H/m}] \end{aligned}$$

• Identical conductors ($r_x = r_y$): $L' = 4 \cdot 10^{-7} \ln \left(\frac{D}{r'}\right) [H/m]$

3.1 Inductance of a three-phase three-wire line



- Assumptions: balanced phase currents, equidistant spacing *D*, identical conductor radii *r*
- Line-neutral inductances of three-phase three-wire line

$$L' = L'_a = L'_b = L'_c = 2 \cdot 10^{-7} \ln\left(\frac{D}{r'}\right) [\text{H/m}]$$

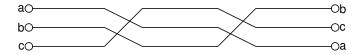
- This is half the inductance of a single-phase two-wire line!
- $\bullet\,$ Inductances balanced $\rightarrow\,$ can use single-phase equivalent circuit for network calculations

3.1 Inductance of a three-phase three-wire line -Transposition of conductors

- In practice, conductors rarely spaced in equidistant manner
- → Inductances become unbalanced ($L_a \neq L_b \neq L_c$) → this causes unbalanced voltage drops even if currents are balanced!
 - Practical remedy: restore balance by exchanging conductor positions along line (e.g. at substations)
 - This is called transposition
 - For transposed line with equivalent spacing $D_{eq} = \sqrt[3]{D_{12}D_{23}D_{31}}$

$$L' = L'_a = L'_b = L'_c = 2 \cdot 10^{-7} \ln \left(\frac{D_{eq}}{D_S} \right) [\text{H/m}]$$

 D_S ... Geometric Mean Radius (GMR) for stranded conductors $D_S = r'$ for solid cylindrical conductors



3.1 Example: Determine inductance of a three-phase three-wire line

Task. A completely transposed 50-Hz three-phase line has flat horizontal phase spacing with 10m between adjacent conductors. The geometric mean radius (GMR) of the conductors is 0.0159m. The line length is $\ell = 200$ km. Determine the inductance in H and the inductive reactance in Ω .

Solution. We have that

$$D_{eq} = \sqrt[3]{10 \cdot 10 \cdot 20} = 12.6 \ m$$

Hence,

$$L' = 2 \cdot 10^{-7} \ln \left(\frac{D_{eq}}{D_S}\right) = 2 \cdot 10^{-7} \ln \left(\frac{12.6}{0.0159}\right) = 1.335 \mu \text{ H/km}$$

and

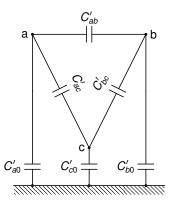
$$L = L' \cdot \ell = 1.335 \cdot 10^{-6} \cdot 200 = 0.267 \text{ H},$$

as well as

$$X = L\omega = 0.267 \cdot 2 \cdot \pi \cdot 50 = 83.88$$
 Ω

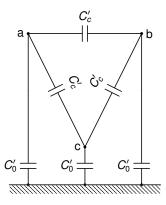
3.2 Capacitance - Coupling and earth capacitances

- Line capacitance can be obtained in similar fashion to inductances
- Need to consider interaction of electric fields between conductors and between individual conductors and earth
- This can be modelled via coupling and earth capacitances



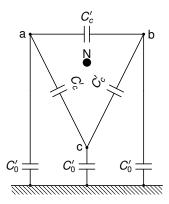
3.2 Capacitance - Balanced three-phase three-wire line (1)

- Assume balanced line (e.g. via transposition)
- \bullet Then, $C_0'=C_{a0}'=C_{b0}'=C_{c0}'$ and $C_c'=C_{ab}'=C_{ac}'=C_{bc}'$
- Coupling conductors C'_c form Δ -connection



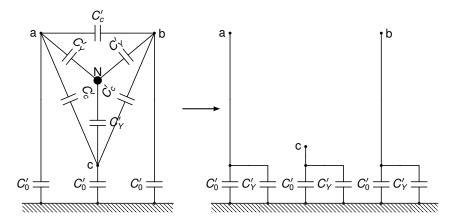
3.2 Capacitance - Balanced three-phase three-wire line (2) J

- Assume balanced line (e.g. via transposition)
- Then, $C_0'=C_{a0}'=C_{b0}'=C_{c0}'$ and $C_c'=C_{ab}'=C_{ac}'=C_{bc}'$
- Coupling conductors C'_c form Δ -connection
- Introduce *fictitious* neutral point N



3.2 Capacitance - Balanced three-phase three-wire line (3) T University of Technology

- $\bullet\,$ Balanced conditions \to sum of currents at N equal zero \to N has same potential as ground
- Parallel connection of coupling and earth capacitances $C'_Y = 3C'_c$

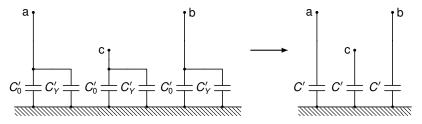


3.2 Capacitance - Balanced three-phase three-wire line (4)]

- $\bullet~$ Balanced conditions \rightarrow sum of currents at N equal zero \rightarrow N has same potential as ground
- Parallel connection of coupling and earth capacitances $C' = C'_Y + C'_0$

$$C' = rac{2\pi\varepsilon_0}{\ln\left(rac{D_{eq}}{r}
ight)}$$
 [F/m] $\varepsilon_0 \dots$ vacuum permittivity

• Typical value for overhead lines $C' \approx$ 10 nF/km



Note: similar calculations applicable to conductor bundles

4 Outline

Physical relevance of power lines

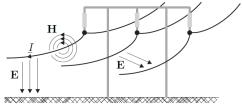
- 2 Structure of overhead lines
- 3 Derivation of lumped inductor and capacitor values

Overhead line parameters

- Concentrated parameters
- Some brief remarks on cables

5 Equivalent circuits for power lines

Magnetic and electric fields of conducting power line

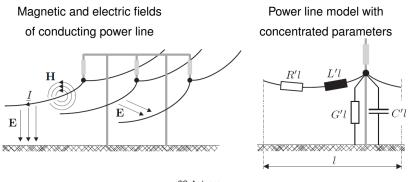


- E...electric field
- H... magnetic field

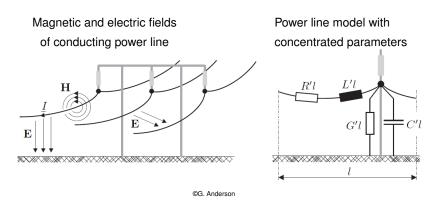
©G. Anderson

- Each power line has characteristic line parameters
- Parameters dependent on line geometry and material
- $\bullet\,$ Parameters often indicated in [unit]/km and by giving the line length $\ell\,$

4.1 Overhead line parameters - Concentrated parameters (1)



- Line resistance $R' [\Omega/km] \leftrightarrow Ohmic$ resistance of conductor
- Line inductance L' [H/km] \leftrightarrow Magnetic field of conductor
- Capacitance C' [F/km] \leftrightarrow Electric field of conductor
- Shunt conductance G' [S/km] \leftrightarrow Leakage currents at insulators



- For performing circuit analysis involving power lines (e.g. to determine the network conditions or design) we need to know the concentrated parameters of the lines
- Usually, concentrated parameters indicated by manufacturer

Please see the course book for a detailed derivation.

- Real conductors are not lossless!
- $\rightarrow\,$ This can be accounted for by including a series resistance in the conductor model
 - For DC current, resistance of conductor can easily be determined from its diameter, length and specific conductivity
 - For AC current, in addition the *skin effect* needs to be considered when determining the resistance of a conductor
 - Skin-effect: current not distributed homogeneously over conductor diameter, but concentrated towards conductor boundaries
- \rightarrow Current density increases towards conductor boundaries
- → Effective diameter of conductor is reduced and, hence, ohmic resistance is increased compared to DC resistance (typically by a few percent)

- For steel-reinforced aluminium conductors (ACSR), AC resistance is approximately same as DC resistance
- Reason: Skin-effect \rightarrow reduced AC current in steel strands \rightarrow increase in AC resistance by skin-effect comparable to higher DC current in steel strands
- Conductor losses result in heat dissipation \rightarrow maximum conductor current limited, as long-term high temperatures (> 80°) decrease mechanical strength of conductor material \rightarrow line sags
- Line resistance operating at temperature of ϑ° can be calculated via

$$R' = R'_{20}(1 + \alpha(\vartheta - 20^{\circ}C)) [R/m]$$

$${\cal R}_{20}^{\prime}=rac{
ho_{20}}{\cal A}$$
 resistance of conductor at 20°C

 $\rho_{20}...$ specific resistance of of conductor material at 20°C

A... effective conductor area

For practical conductors, resistance values obtained via measurements

- Also, losses due to insulator leakage currents and corona
- Corona: high value of electric field strength at conductor surface causes air to become electrically ionised and to conduct
- Corona losses dependent on meteorological conditions (rain; humidity) and conductor surface irregularities
- For overhead lines, conductance G' can only be estimated from measurements, while it can be determined experimentally for cables
- Usually, conductance is very small and therefore most often neglected in power system studies

- Cables mostly used at low voltage levels (<110 kV)
- Often installed underground
- Physical characteristics of cables fundamentally different from overhead transmission lines (OHLs)!
- Main reasons:
 - Distance between conductors as well as between conductors and earth much smaller in cables than in OHLs
 - Conductors in cables typically surrounded by other metallic materials, e.g. skin
 - Insulation material of OHLs is air, while in cables materials such as paper, oil or SF₆ are used
- Consequences:
 - Inductance of OHLs usually higher as that of cables
 - Capacitance of cables usually much higher as that of OHLs

• Typical values for parameters of OHLs at 50 Hz

Rated voltage in kV	230	345	500	765
<i>R</i> ′ [Ω/km]	0.050	0.037	0.028	0.012
$X_L' = \omega L' \left[\Omega/\mathrm{km}\right]$	0.407	0.306	0.271	0.274
$Y_C' = \omega C' \ [\mu S/km]$	2.764	3.765	4.333	4.148

Typical values for parameters of cables at 50 Hz

Rated voltage in kV	115	230	500
<i>R</i> ′ [Ω/km]	0.059	0.028	0.013
$X_L' = \omega L' \left[\Omega/\mathrm{km}\right]$	0.252	0.282	0.205
$Y_{C}^{\prime}=\omega C^{\prime} \; [\mu { m S/km}]$	192.0	204.7	80.4

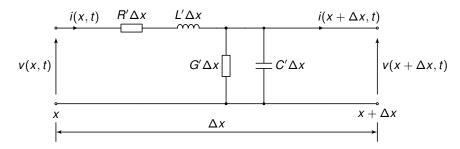
5 Outline

- 1) Physical relevance of power lines
- 2 Structure of overhead lines
- 3 Derivation of lumped inductor and capacitor values
- **4** Overhead line parameters
- 5 Equivalent circuits for power lines
 - Differential equation of a power line
 - Solution of differential equation of a power line
 - П-equivalent circuit
 - Model simplifications and their validity

- Being able to describe the behaviour of a power systems by a mathematical model is a fundamental prerequisite for network planning and operation
- We will derive a model of a power line that is valid under *stationary* (or steady-state) conditions
- Note: A real power system is never exactly in steady-state due to continuous variations of load and generation
- However, under normal conditions this variations are of small magnitude compared to overall power flows in network
- Also, normal load patterns change over fairly long period (several tens of minutes)
- $\rightarrow\,$ Steady-state model suitable for describing nominal network operating conditions

5.1 Differential equation of a power line - Line section

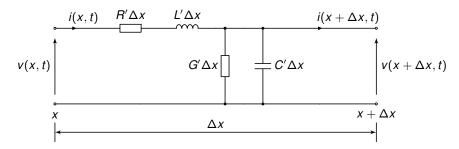




- Line parameters R', L', G' and C' are not lumped, but (uniformly) distributed along length of line; Δx denotes a small distance
- Propagation of current *i*(*t*, *x*) and voltage *v*(*t*, *x*) across that line segment is not instantaneous
- Propagation can be described by a partial-differential equation (i.e. propagation depends on time *t* and location *x*)

5.1 Differential equation of a power line - KVL and KCL

Section of length Δx of homogeneous power line



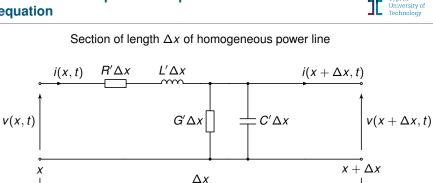
From KVL

$$\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}, t) = \mathbf{v}(\mathbf{x}, t) - \mathbf{R}' \Delta \mathbf{x} \mathbf{i}(\mathbf{x}, t) - \mathbf{L}' \Delta \mathbf{x} \frac{\partial \mathbf{i}(\mathbf{x}, t)}{\partial t}$$

From KCL

$$i(x + \Delta x, t) = i(x, t) - G' \Delta x v(x + \Delta x, t) - C' \Delta x \frac{\partial v(x + \Delta x, t)}{\partial t}$$

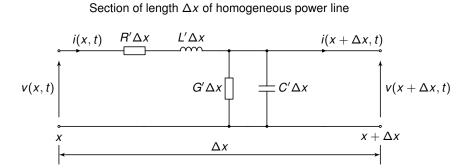
5.1 Differential equation of a power line - Differential equation



• For infinitesimally small section length $\Delta x \rightarrow 0$, previous equations are equivalent to

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}} = -\left(\mathbf{R}' + \mathbf{L}'\frac{\partial}{\partial t}\right)\mathbf{i}$$
$$\frac{\partial \mathbf{i}}{\partial \mathbf{x}} = -\left(\mathbf{G}' + \mathbf{C}'\frac{\partial}{\partial t}\right)\mathbf{v}$$

5.1 Differential equation of a power line - Telegrapher's equations



 Decouple equations by differentiating first wrt x and second wrt t and insert resulting expressions in equations (derived by Maxwell around 1860)

$$\frac{\partial^2 \mathbf{v}}{\partial x^2} = \mathbf{R}' \mathbf{G}' \mathbf{v} + \left(\mathbf{R}' \mathbf{C}' + \mathbf{L}' \mathbf{G}'\right) \frac{\partial \mathbf{v}}{\partial t} + \mathbf{L}' \mathbf{C}' \frac{\partial^2 \mathbf{v}}{\partial t^2}$$
$$\frac{\partial^2 i}{\partial x^2} = \mathbf{R}' \mathbf{G}' \mathbf{i} + \left(\mathbf{R}' \mathbf{C}' + \mathbf{L}' \mathbf{G}'\right) \frac{\partial \mathbf{i}}{\partial t} + \mathbf{L}' \mathbf{C}' \frac{\partial^2 \mathbf{i}}{\partial t^2}$$

Iniversity of

- In power systems, we are mostly interested in solving telegrapher's equations for special case of *sinusoidal excitation*
- For that case, voltage v(x, t) and current i(x, t) can be represented as phasors with complex amplitudes <u>V</u> and <u>I</u> and frequency $\omega = 2\pi f$:

$$u(x,t) = \Re\left(\underline{V}(x)e^{j\omega t}\right)$$
$$i(x,t) = \Re\left(\underline{I}(x)e^{j\omega t}\right)$$

 By using phasors, telegrapher's equations reduce to two linear first-order differential equations

$$\frac{d\underline{V}}{dx} = -(R' + j\omega L')\underline{I}$$
$$\frac{d\underline{I}}{dx} = -(G' + j\omega C')\underline{V}$$

• Eliminating <u>I</u>(x) leaves us with a linear homogeneous second-order differential equation, which is called *wave equation*

$$\frac{d^2 \underline{V}}{dx^2} = (R' + j\omega L')(G' + j\omega C')\underline{V}$$

• Note: introduction of phasors transforms partial differential equation in ordinary differential equation (i.e. in one variable)

• The solution of the wave equation can be computed as

$$\underline{V}(x) = \underline{V}^+ e^{-\underline{\gamma}x} + \underline{V}^- e^{\underline{\gamma}x}$$

• \underline{V}^+ and \underline{V}^- are integration constants

• γ is called *propagation constant*

$$\underline{\gamma} = \sqrt{(\mathbf{R}' + j\omega L')(\mathbf{G}' + j\omega \mathbf{C}')}$$

5.2 Solution of the wave equation - Interpretation

Writing the solution of the wave equation as a function of time, we obtain

$$\boldsymbol{v}(\boldsymbol{x},t) = \Re \left(\underbrace{\underline{V}^{+} \boldsymbol{e}^{-\underline{\gamma}\boldsymbol{x}} \boldsymbol{e}^{j\omega t}}_{\text{forward travelling wave}} + \underbrace{\underline{V}^{-} \boldsymbol{e}^{\underline{\gamma}\boldsymbol{x}} \boldsymbol{e}^{j\omega t}}_{\text{backward travelling wave}} \right)$$

- Forward travelling (voltage) wave moves in positive x-direction
- Backward travelling (voltage) wave moves in negative x-direction (also called *reflected* wave)
- $\bullet\,$ Complex propagation constant γ can be split in real and imaginary part

$$\underline{\gamma} = \alpha + \mathbf{j}\beta$$

- $\bullet \ \alpha$ describes damping of (voltage) wave and is measured in Nepers per unit length 2
- β describes phase of (voltage) wave at distance x from origin and is measured in radians per unit length

²Np=Neper is a logarithmic unit to measure physical field quantities.

EEN320 — Dr Petros Aristidou — Last updated: April 3, 2023

5.2 Solution of the wave equation - Current

• By differentiating V(x) we obtain

$$\frac{d\underline{V}}{dx} = -\underline{\gamma}\underline{V}^{+}\boldsymbol{e}^{-\underline{\gamma}x} + \underline{\gamma}\underline{V}^{-}\boldsymbol{e}^{\underline{\gamma}x}$$

and, hence,

$$\underline{l}(x) = \frac{1}{-(R'+j\omega L')} \frac{d\underline{V}}{dx} = \frac{-\underline{\gamma}\underline{V}^{+}e^{-\underline{\gamma}x} + \underline{\gamma}\underline{V}^{-}e^{\underline{\gamma}x}}{-(R'+j\omega L')}$$
$$= \sqrt{\frac{G'+j\omega C'}{R'+j\omega L'}} \left(\underline{V}^{+}e^{-\underline{\gamma}x} - \underline{V}^{-}e^{\underline{\gamma}x}\right)$$

• Define surge impedance (also called characteristic impedance)

$$\underline{Z}_{w} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$

$$\Rightarrow \quad \underline{I}(x) = \frac{1}{\underline{Z}_{W}} \left(\underline{V}^{+} e^{-\underline{\gamma}x} - \underline{V}^{-} e^{\underline{\gamma}x} \right)$$

Boundary conditions at beginning of line (x = 0)

$$\underline{V}(0) = \underline{V}_1 \qquad \underline{I}(0) = \underline{I}_1$$

• Inserting these values in solutions for $\underline{V}(x)$ and $\underline{I}(x)$ at x = 0 yields

$$\frac{\underline{V}_{1}}{\underline{I}_{1}} = \frac{\underline{V}^{+} + \underline{V}^{-}}{\underline{I}_{1}} = \frac{\underline{V}^{+} - \underline{V}^{-}}{\underline{Z}_{W}}$$

• Solving for \underline{V}^+ and \underline{V}^- , we obtain

$$\underline{V}^{+} = \frac{\underline{V}_{1} + \underline{Z}_{W}\underline{l}_{1}}{2}$$
$$\underline{V}^{-} = \frac{\underline{V}_{1} - \underline{Z}_{W}\underline{l}_{1}}{2}$$

5.2 Solution of the wave equation - Boundary conditions (2)

Substituting expressions for <u>V</u>⁺ and <u>V</u>⁻ in equations for <u>V</u>(x) and <u>I</u>(x) yields

$$\underline{V}(x) = \left(\frac{\underline{V}_1 + \underline{Z}_W \underline{I}_1}{2}\right) e^{-\underline{\gamma}x} + \left(\frac{\underline{V}_1 - \underline{Z}_W \underline{I}_1}{2}\right) e^{\underline{\gamma}x} \\ = \left(\frac{e^{\underline{\gamma}x} + e^{-\underline{\gamma}x}}{2}\right) \underline{V}_1 - \underline{Z}_W \underline{I}_1 \left(\frac{e^{\underline{\gamma}x} - e^{-\underline{\gamma}x}}{2}\right)$$

$$\underline{l}(x) = \left(\frac{\underline{V}_1 + \underline{Z}_W \underline{l}_1}{2\underline{Z}_W}\right) e^{-\underline{\gamma}x} - \left(\frac{\underline{V}_1 - \underline{Z}_W \underline{l}_1}{2\underline{Z}_W}\right) e^{\underline{\gamma}x} \\ = -\frac{\underline{V}_1}{\underline{Z}_W} \left(\frac{e^{\underline{\gamma}x} - e^{-\underline{\gamma}x}}{2}\right) + \left(\frac{e^{\underline{\gamma}x} + e^{-\underline{\gamma}x}}{2}\right) \underline{l}_1$$

• We can recognise the hyperbolic functions cosh and sinh

$$\cosh(\underline{\gamma}x) = \frac{e^{\underline{\gamma}x} + e^{-\underline{\gamma}x}}{2}, \quad \sinh(\underline{\gamma}x) = \frac{e^{\underline{\gamma}x} - e^{-\underline{\gamma}x}}{2}$$

5.2 Solution of the wave equation - Boundary conditions (3)

 Using cosh and sinh gives compact expressions, we obtain equations for propagation of voltage and current from beginning of line

$$\underline{V}(x) = \cosh(\underline{\gamma}x)\underline{V}_1 - \underline{Z}_W \sinh(\underline{\gamma}x)\underline{I}_1$$
$$\underline{I}(x) = -\frac{\underline{V}_1}{\underline{Z}_W}\sinh(\underline{\gamma}x) + \cosh(\underline{\gamma}x)\underline{I}_1$$

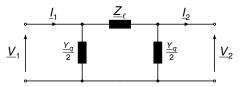
• In same way, we can define boundary conditions at end of line $(x = \ell)$

$$\underline{V}(\ell) = \underline{V}_2 \qquad \underline{I}(\ell) = \underline{I}_2$$

and obtain equations for propagation of voltage and current from end of line

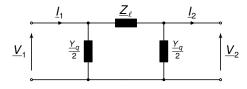
$$\underline{V}(x) = \cosh(\underline{\gamma}(\ell - x))\underline{V}_2 + \underline{Z}_W \sinh(\underline{\gamma}(\ell - x))\underline{I}_2$$
$$\underline{I}(x) = \frac{\underline{V}_2}{\underline{Z}_W} \sinh(\underline{\gamma}(\ell - x)) + \cosh(\underline{\gamma}(\ell - x))\underline{I}_2$$

- In practice, we often don't need to use the (rather complicated) wave equation to describe phenomena in power systems
- Reason: Usually, we are interested in the voltage drop across a line or the reactive power flow, but not in the exact trajectory of the voltages and currents along the line
- $\rightarrow\,$ Then, we may use simplified models for a power line without compromising the accuracy of our calculations too much
 - We will discuss such models in the following
 - In particular, we will derive the Π-equivalent circuit of a transmission line



- Π-model contains lumped line parameters
- For model derivation, it is convenient to distribute shunt impedance <u>Y</u>_q equally on both sides of quadrupole
- We will derive this model from the wave equation

5.3 n-equivalent circuit of homogeneous power line (2)

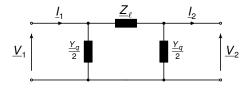


KCL and KVL yield

$$\begin{bmatrix} \underline{V}_1 \\ \underline{l}_1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 + \underline{Z}_{\ell} \frac{\underline{Y}_q}{2} & \underline{Z}_{\ell} \\ \underline{\underline{Y}_q} \left(2 + \underline{Z}_{\ell} \frac{\underline{Y}_q}{2} \right) & 1 + \underline{Z}_{\ell} \frac{\underline{Y}_q}{2} \end{bmatrix}}_{=A_1} \begin{bmatrix} \underline{V}_2 \\ \underline{l}_2 \end{bmatrix}$$

• From wave equation we obtain with $\underline{V}_1 = \underline{V}(x = 0)$ and $\underline{I}_1 = \underline{I}(x = 0)$

$$\begin{bmatrix} \underline{V}_1 \\ \underline{I}_1 \end{bmatrix} = \underbrace{\begin{bmatrix} \cosh(\underline{\gamma}\ell) & \underline{Z}_W \sinh(\underline{\gamma}\ell) \\ \\ \underline{\frac{1}{Z_W}} \sinh(\underline{\gamma}\ell) & \cosh(\underline{\gamma}\ell) \end{bmatrix}}_{=A_2} \begin{bmatrix} \underline{V}_2 \\ \underline{I}_2 \end{bmatrix}$$

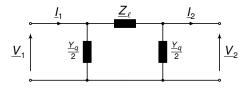


• Comparing coefficients of matrices A₁ and A₂ yields

$$\frac{\underline{Z}_{\ell} = \underline{Z}_{W} \sinh(\underline{\gamma}\ell)}{\underline{Y}_{q}} = \frac{\cosh(\underline{\gamma}\ell) - 1}{\underline{Z}_{W} \sinh(\underline{\gamma}\ell)} = \frac{1}{\underline{Z}_{W}} \tanh\left(\frac{\underline{\gamma}\ell}{2}\right)$$

• These parameters correspond to exact relations between currents and voltages according to wave equation for x = 0 and $x = \ell$

5.3 \sqcap -equivalent circuit of homogeneous power line - The case $|\underline{\gamma}\ell|\ll 1$



• For $|\underline{\gamma}\ell| \ll 1$, the expressions for \underline{Z}_{ℓ} and \underline{Y}_{q} can be simplified

$$\frac{\underline{Z}_{\ell} = \underline{Z}_{W} \sinh(\underline{\gamma}\ell) \approx \underline{Z}_{W} \underline{\gamma}\ell = \underline{Z}'\ell}{\underline{Y}_{q}} = \frac{1}{\underline{Z}_{W}} \tanh\left(\frac{(\underline{\gamma}\ell)}{2}\right) \approx \frac{1}{\underline{Z}_{W}} \frac{\underline{\gamma}\ell}{\underline{2}} = \frac{\underline{Y}'\ell}{2}$$

→ *Concentrated* elements \underline{Z}_{ℓ} and \underline{Y}_q can be computed from *distributed* parameters R', L', G' and C' if $|\underline{\gamma}\ell| \ll 1$

$$\frac{\underline{Z}_{\ell} = \underline{Z}'\ell = (R' + jX')\ell}{\frac{Y}{2} = \frac{Y'}{2}\ell = \frac{(G' + jB')}{2}\ell$$

5.3 ¬-equivalent circuit of homogeneous power line -Validity of model

- Accuracy of assumption $|\underline{\gamma}\ell|\ll$ 1 is crucial for validity of simplified equivalent $\Pi\text{-model}$
- The larger |<u>γ</u>ℓ|, the worse the model with concentrated parameters <u>Z</u>ℓ and <u>Y</u>_q represents evolution of current and voltage along the line
- \rightarrow Whenever you use a simplified Π -model to represent a power line, be aware that the model accuracy reduces with increasing line length!
 - Rule of thumb:
 - Max. length for overhead line \approx 300 km
 - Max. length for cable pprox 100 km
 - Therefore, long power lines are often split into several shorter sections in power flow calculations and each section is represented by individual (simplified) Π-model

Task. Consider a power line with the following characteristics

 $R' = 0.05 \ \Omega/\text{km}, \quad L' = 1.25 \ \text{mH/km}, \quad G' = 0 \mu \ \text{S/km}, \quad C' = 10 \ \text{nF/km}.$

Suppose that the line length is 200 km and that the line is operated with a frequency of 50 Hz.

1) Calculate the series impedance \underline{Z}_{ℓ}^{E} and the shunt admittance \underline{Y}_{q}^{E} for the exact Π -equivalent circuit.

2) If $|\underline{\gamma}\ell| \ll 1$, then calculate the simplified series impedance \underline{Z}_{ℓ} and the shunt admittance \underline{Y}_{a} of the Π -equivalent circuit for that case.

5.3 Example: ⊓-equivalent circuit of homogeneous power Iine (2)

Solution. 1) Surge impedance of line with G' = 0 and $\omega = 2\pi f = 314.16$ rad/s

$$\underline{Z}_{W} = \sqrt{\frac{R' + j\omega L'}{j\omega C'}}$$
$$= \sqrt{\frac{0.05 + j314.16 \cdot 1.25 \cdot 10^{-3}}{j314.16 \cdot 10 \cdot 10^{-9}}} = 354.27 - j22.463 = 354.98 / -3.63^{\circ} \Omega$$

Propagation constant of line with G' = 0 and $\omega = 2\pi f = 314.16$ rad/s

$$\underline{\gamma} = \sqrt{(R' + j\omega L')(j\omega C')}$$

= $\sqrt{(0.05 + j314.16 \cdot 1.25 \cdot 10^{-3})(j314.16 \cdot 10 \cdot 10^{-9})}$
= 0.0001 Np/km + j0.0011 [rad/km]

Np=Neper (logarithmic unit to measure physical field quantities)

5.3 Example: ⊓-equivalent circuit of homogeneous power line (3)

Series impedance of **Π**-equivalent circuit

$$\begin{aligned} \underline{Z}_{\ell}^{E} &= \underline{Z}_{W} \sinh(\underline{\gamma}\ell) \\ &= 354.98 \underline{/-} 3.63^{\circ} \cdot \sinh(0.0011 \underline{/8} 4.81^{\circ} \cdot 200) \\ &= 11.818 + j76.889 = 77.79 \underline{/8} 1.27^{\circ} \ \Omega \end{aligned}$$

Shunt admittance of II-equivalent circuit

$$\begin{split} \underline{Y}_{q}^{E} &= \frac{2}{\underline{Z}_{W}} \tanh\left(\frac{\underline{\gamma}\ell}{2}\right) \\ &= \frac{2}{354.98 \underline{/}{-}3.63^{\circ}} \cdot \tanh\left(\frac{0.0011 \underline{/}84.81^{\circ} \cdot 200}{2}\right) \\ &= 1.754 \cdot 10^{-5} + \underline{i}6.246 \cdot 10^{-4} = 6.248 \cdot 10^{-4} \underline{/}88.40^{\circ} \text{ S} \end{split}$$

\rightarrow Exact Π -equivalent circuit can have shunt conductance even if G' = 0!

³Physical explanation: We could model the considered line equivalently by two Π-equivalent circuits in series. Then, we would see that there are active power losses in the circuit. Thus, the single Π-equivalent circuit has to have an ohmic component.

5.3 Example: ⊓-equivalent circuit of homogeneous power line (4)

2) We have that

 $|\gamma \ell| = 0.0011 \cdot 200 = 0.22$

This value is reasonably smaller than 1

Thus, using the simplified equations valid for $|\gamma \ell| \ll 1$, we obtain

$$\underline{Z}_{\ell} = (R' + j\omega L')\ell$$

= (0.05 + j314.16 \cdot 1.25 \cdot 10^{-3}) \cdot 200
= 10 + j78.54 = 79.17/82.75° \Omega

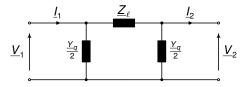
and

$$\underline{Y}_{q} = jB'\ell = j\omega C'\ell$$

= j314.16 \cdot 10 \cdot 10^{-9} \cdot 200 = j6.283 \cdot 10^{-4} S

 \rightarrow Simplified Π -equivalent circuit has NO shunt conductance whenever G' = 0!

Remaining parameters are very similar to exact values: $\underline{Z}_{\ell} \approx \underline{Z}_{\ell}^{E}, \Im(\underline{Y}_{q}) \approx \Im(\underline{Y}_{q}^{E})$



- In practice, G' is small (in particular for voltages > 110kV) and therefore often neglected
- Then, shunt admittance is purely capacitive

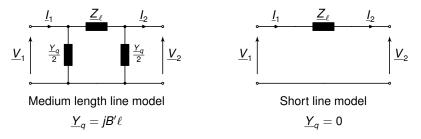
$$\underline{Z}_{\ell} = \underline{Z}'\ell = (R' + jX')\ell \qquad \quad \frac{\underline{Y}_q}{2} = \frac{\underline{Y}'}{2}\ell = \frac{jB'}{2}\ell$$

 Some times, also conductor resistances neglected → R' = 0; such line model is called *lossless* and its concentrated (or lumped) parameters are given by

$$\underline{Z}_{\ell} = \underline{Z}'\ell = jX'\ell \qquad \qquad \frac{\underline{Y}_{q}}{2} = \frac{\underline{Y}'}{2}\ell = \frac{jB'}{2}\ell = \frac{j\omega C'}{2}\ell$$

5.4 Model simplifications - (2) Medium- and short-length lines

- For overhead lines models can be further simplified
- Typically, overhead lines classified into 3 categories
 - Short lines (up to 100 km). Usually, C' and G' very small; model: series impedance Z_ℓ = R'ℓ + jωL'ℓ; shunt admittance Y_q is completely neglected
 - Medium length lines (100 to 300 km). Use of simplified Π -model with G' = 0 without any significant loss of accuracy
 - Long lines (larger than 300 km). Significant inaccuracies with concentrated parameter model. Line should either be represented by wave equation or split into several shorter sections



5.4 Model simplifications - Comparison: setup

 We compare results obtained with different models for exemplary 230 kV transmission line with characteristic impedance and propagation constant

 $\underline{Z}_{W} = 382.2 - j16.5 \,\Omega$ $\gamma = \alpha + j\beta = 0.0001 \,[\text{Np/km}] + j0.0011 \,[\text{rad/km}]$

Np=Neper (logarithmic unit to measure physical field quantities)

- We seek to calculate voltage \underline{V}_2 at end of line under *no load* conditions $\rightarrow \underline{I}_2 = 0$
- We assume $|\underline{V}_1| = 1.0$ pu
- We will explore 3 different ways
 - 1) Using the exact wave equation (Section 4.2)
 - 2) Using the medium length Π-equivalent circuit (Section 4.3)
 - 3) Using the short line model (Section 4.4)

1) For $\underline{I}_2 = 0$, exact wave equation reduces to (see matrix A_2)

$$\underline{V}_1 = \underline{V}(x = 0) = \underline{V}_2 \cosh(\underline{\gamma}\ell)$$

2) Medium length Π-model

$$\underline{Z}_{\ell} \approx \underline{Z}_{W} \underline{\gamma} \ell \qquad \qquad \frac{\underline{Y}_{q}}{2} \approx \frac{1}{\underline{Z}_{W}} \frac{\underline{\gamma} \ell}{2}$$

Hence,

$$\underline{V}_{1} = \left(1 + \frac{\underline{Z}_{\ell} \underline{Y}_{q}}{2}\right) \underline{V}_{2} = \left(1 + \frac{(\underline{\gamma}\ell)^{2}}{2}\right) \underline{V}_{2}$$

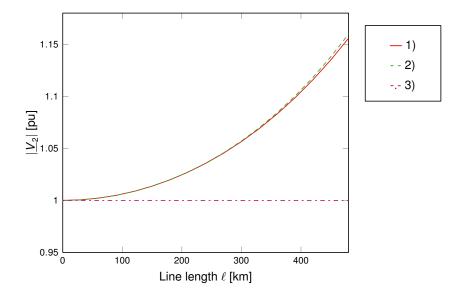
3) Short line model: there is no voltage drop across series element for zero current $\rightarrow \underline{V}_2 = \underline{V}_1$

Values for $|\underline{V}_2|$ obtained for different line lengths and different models

Length ℓ in km	$ \underline{\gamma}\ell $	1)	2)	3)
50	0.0552	1.0015	1.0015	1.000
100	0.1105	1.0060	1.0060	1.000
300	0.3314	1.0565	1.0570	1.000
500	0.5523	1.1710	1.1759	1.000

- For short line lengths (< 50 km) all models provide almost identical results
- With increasing line length, results with short line clearly differ from those with other models
- Accuracy of Π-model fairly good up to 300 km, but increasing deviation with increasing length

5.4 Model simplifications - Comparison: Plots



- Overhead lines most economic solution for long-distance power transmission
- An overhead line consists of conductors, support structures, shield wires and insulators
- Characteristics of power lines can be represented by set of concentrated parameters *R*', *L*', *C*' and *G*'
- Exact propagation of voltage and current in a power line can be described by telegrapher's equations (in time-domain), respectively by the wave equation (in phasor-domain)
- For most practical applications, the use of a Π-equivalent circuit suffices to accurately describe the voltage and current relations on a power line
- The validity of the Π-model reduces significantly for long lines (>300 km)