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Today’s learning objectives

After this part of the lecture and additional reading, you should be able to . . .
1 . . . derive models of the main power system components that can be

used in power flow studies;

2 . . . derive the power flow equations for a given power network;

3 . . . formulate a standard power flow problem together with the required
constraints;

4 . . . explain the functioning of standard numerical methods to solve the
power flow problem.
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Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation

3 Nodal formulation of the network equations

4 Active and reactive power flows

5 Basic power flow problem

6 Solution of the power flow problem
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1 From small- to large-scale systems. . .
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1 The importance of power flow analysis

It is highly important to know the voltages, currents and powers in
different parts of a power system

This is necessary for . . .
. . . an adequate design of the different components (generators, lines,
transformers,. . . )

. . . keeping losses low and ensuring an economic operation of the system,
while taking relevant constraints into account (e.g., voltage, line and
generation limits)

. . . monitoring the (steady-state) stability of the system

Yet, it is practically impossible to physically measure all voltages and
currents in the system

A power flow computation is an efficient tool to obtain the complete state
of the system, i.e., all complex voltages at all nodes in the system (once
the voltages are known, the currents and powers can also be computed)

Power flow computations are the most used computations in power
systems!
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1 Power flow computation

A power flow computation is an efficient tool to obtain the complete state
of the system, i.e., all complex voltages at all nodes, under balanced
steady-state conditions

Once the voltages are known, the currents and powers can also be
computed

Power flow computations are usually performed using dedicated
software

Useful tool for both analysis of an existing network and of projected
network expansions or load growth

→ Power flow computations are the most used computations in power
systems!
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1 General formulation of power flow problem (1)

In general, the power flow problem (also called load flow problem) is
formulated as a set of nonlinear equations

f(x,u,p) = 0,

where
f is an n-dimensional nonlinear function

x is an n-dimensional complex vector containing the states of the system.
These are the unknown voltage magnitudes and phase angles at the nodes
in the system.

u is an input vector with known entries (e.g., voltages at generator nodes
with voltage control)

p is a vector that contains the parameters of the network components (e.g.,
line and transformer impedances)
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1 General formulation of power flow problem (2)

The power flow problem consists in formulating the equations in f and
then solving them with respect to x

Both aspects are covered in the remainder of this part of the lecture

A necessary condition for the power flow problem to have a physically
meaningful solution is that f and x have the same dimension, since then
we have the same number of unknowns as equations

But even then, there might not be a unique solution or even no solution
at all!
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2 Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation
Multi-purpose two-port for power lines and transformers
Shunt elements
Loads
Generators

3 Nodal formulation of the network equations

4 Active and reactive power flows

5 Basic power flow problem

6 Solution of the power flow problem
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2.1 Review: Π-model of a transmission line (1)

Ikm

Y sh
km

Z km

Y sh
km

Imk

V k V m

To formulate network equations for power flow problem, typically line
admittance is used instead of line impedance

Y km = Z−1
km = (Rkm + jXkm)

−1 = Gkm + jBkm

with
Gkm =

Rkm

R2
km + X 2

km
, Bkm = − Xkm

R2
km + X 2

km

In most cases, shunt conductance is very small and therefore neglected

For standard transmission lines both Rkm and Xkm are positive and thus
Gkm is positive and Bkm is negative
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2.1 Review: Π-model of a transmission line (2)

Ikm

Y sh
km

Z km

Y sh
km

Imk

V k V m

Complex currents given in terms of complex voltages V k and V m by

Ikm = Y km (V k − V m) + Y sh
mk V k

Imk = Y km (V m − V k ) + Y sh
mk V m

Or, equivalently, in matrix form[
Ikm

Imk

]
=

[
Y km + Y sh

km −Y km

−Y km Y km + Y sh
km

][
V k

V m

]

Note: above matrix is symmetric (i.e., it is identical to its transposed);
this reflects the fact that lines and cables are symmetrical elements
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2.1 Review: Model of an in-phase three-phase transformer

Imk

Z km
Ikm EmEk

1 akm
V k V m

In-phase transformer without core losses, turns ratio ckm and akm = c−1
km

Em = akmEk = V m Ikm = −akmImk

Using Ohm’s law, we have that (with Y km = Z−1
km )

Ikm = Y km(V k − Ek ) = Y km(V k − a−1
km V m)

Imk = −a−1
km Y km(V k − Ek ) = −a−1

km Y km(V k − a−1
km V m)

Or, equivalently, in matrix form[
Ikm

Imk

]
=

[
Y km −a−1

km Y km

−a−1
km Y km a−2

km Y km

][
V k

V m

]
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2.1 Π-equivalent model of in-phase three-phase
transformer (1)

Ikm

B

A

C

Imk

V k V m

In-phase transformer model can also be represented by Π-equivalent
model

From the above Π-model we have that

Ikm = (A + B)V k − A V m

Imk = −A V k + (A + C)V m

Or, equivalently, in matrix form[
Ikm

Imk

]
=

[
A + B −A

−A A + C

][
V k

V m

]
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2.1 Π-equivalent model of in-phase three-phase
transformer (2)

Ikm

B

A

C

Imk

V k V m

Comparing coefficients with transformer model yields

A = a−1
km Y km B = (1 − a−1

km )Y km C = (a−1
km − 1)a−1

km Y km

Note: Π-equivalent model of a real transformer is symmetric, but if
c2

km ̸= 1 then its diagonal elements differ since then B ̸= C
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2.1 Review: Model of a phase-shifting three-phase
transformer (1)

Imk

Z km
Ikm EmEkV k V mej

pkmπ

6

1 akm

Complex transformation ratio

akm = c−1
km =

(
ckmej

pkmπ

6

)−1
= c−1

km e−j
pkmπ

6 = akmejφkm

Then

Ek = akmV m

Ikm = −a∗
kmImk
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2.1 Review: Model of a phase-shifting three-phase
transformer (2)

Imk

Z km
Ikm EmEkV k V mej

pkmπ

6

Using Ohm’s law, we have that (with Y km = Z−1
km )

Ikm = Y km(V k − Ek ) = Y km(V k − a−1
km V m)

Imk = −(a∗
km)

−1Y km(V k − Ek ) = −(a∗
km)

−1Y km(V k − a−1
km V m)

Or, equivalently, in matrix form[
Ikm

Imk

]
=

[
Y km −a−1

km Y km

−(a∗
km)

−1Y km a−2
km Y km

][
V k

V m

]

,
ΕΕΝ442 — Dr Petros Aristidou — Last updated: September 19, 2023 17/ 75



2.1 No Π-equivalent model for phase-shifting three-phase
transformer!

Ikm

B

A

C

Imk

V k V m

The matrix [
Y km −a−1

km Y km

−(a∗
km)

−1Y km a−2
km Y km

]

is not symmetric if akm is not real!

Hence, it is not possible to determine parameters A, B and C of
equivalent Π-model since a−1

km Y km ̸= (a∗
km)

−1Y km

Phase-shifting transformer model can NOT be modelled by Π-equivalent
circuit!
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2.1 Multi-purpose two-port for power lines and transformers

Imk

jBsh
km

Y kmjBsh
km

Ikm

1 akm φkm

V k V m

Above circuit captures models for power lines (with zero shunt
conductance), cables and transformers

Power line or cable → set akm = 1 and φkm = 0

In-phase transformer → set Bsh
km = 0 and φkm = 0

Phase-shifting transformer → set Bsh
km = 0 and φkm ̸= 0

Complex current

Ikm = jBsh
kmV k + Y km(V k − a−1

km e−jφkm V m)

= jBsh
kmV k + (Gkm + jBkm)(V k − a−1

km e−jφkm V m)
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2.2 Shunt elements

V k Ish
k

Y sh
k

Shunt element = impedance with one port connected to neutral

Shunts are, e.g., capacitors or reactors

Usually, current of a shunt is defined positive when flowing into network
(generator convention)

Ish
k = −Y sh

k V k

Then we obtain for complex power

Ssh
k = Psh

k + jQsh
k = −(Y sh

k )∗|V k |
2
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2.3 Loads

V k I load
k

Load

Loads are fundamental component of power systems

Accurate modelling of loads very important

For high-voltage systems, loads usually represent aggregated demand
of a complete lower voltage network (as seen from a substation)

Then, load typically modelled as constant power load

S load
k = P load

k + jQ load
k

where P load
k and Q load

k are fixed values
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2.4 Generators - Standard model

V k Igen
k X k

Ek

V k Igen
k

Y k Y k Ek

Generators are usually modelled as voltage sources behind an
impedance with variable current injection

Using the Norton equivalent, we can write the equations as

Y k Ek − Y k V k = Igen
k

However, generators are typically controlled such that they inject fixed
amount of active power and keep voltage amplitude at terminals
constant. So, in power flow calculations they are modelled as

Pgen
k = Pset

k , |Vk | = V set
k
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2.4 Generators - Standard model

V k Igen
k X k

Ek

V k Igen
k

Y k Y k Ek

Main constraints are

Active power limitations: active power setpoint has to be within limits
of plant

Reactive power limitations: voltage magnitude mainly controlled via
reactive power generation; yet, reactive power capability of generator
limited by several factors, including active power generation and bus
voltage

→ Not possible to control active power and voltage magnitude outside
certain boundaries
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3 Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation

3 Nodal formulation of the network equations
Net complex current injection
Expressing currents and power flows via admittance matrix

4 Active and reactive power flows

5 Basic power flow problem

6 Solution of the power flow problem
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3 Nodal formulation of network equations - Overview

L4

4
T2T1

321
G

5

L5

Next, we derive the basic network equations from Kirchhoff’s Current
Law (KCL)

We then put these equations in a form that is suitable for formulating the
power flow equations

As part of this procedure, we also discuss the admittance matrix of a
power system
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3.1 Net complex current injection at network buses (1)

Node k

Ik

Y sh
k

Ish
k

Iki

Ikr

Ikm

Consider a network with N ≥ 2 nodes

From KCL

Ik + Ish
k =

∑
m∈Nk

Ikm for k = 1, . . . ,N

Ik is net current injection from generators and
loads

Ish
k is current injection from shunts

Nk is set of nodes adjacent to node k (e.g., in
figure on left Nk contains m, i , r )
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3.1 Net complex current injection at network buses (2)

Recall complex current from node k to m in multi-purpose circuit

Ikm = jBsh
kmV k + Y km(V k − a−1

km e−jφkm V m)

Recall complex shunt current

Ish
k = −Y sh

k V k

Hence, we obtain

Ik =

Y sh
k +

∑
m∈Nk

(
jBsh

km + Y km

)V k −
∑

m∈Nk

Y kma−1
km e−jφkm V m

for k = 1, . . . ,N
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3.2 The admittance matrix

Expression for Ik , k = 1, . . . ,N can be written in matrix form

I = Y V,

where
I is vector with current injections Ik , k = 1, . . . ,N

V is vector with nodal voltages V k = Vk ejθk , k = 1, . . . ,N

Y = G + jB is nodal admittance matrix with elements

Ykk = Gkk + jBkk = Y sh
k +

∑
m∈Nk

(
Bsh

km + Y km

)
Ykm = Gkm + jBkm = −Y kma−1

km e−jφkm = −(Gkm + jBkm)a−1
km e−jφkm

Admittance matrix is compact representation of network interconnections

Synchronous generators are modeled with their Norton equivalent
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3.2 Forming the nodal admittance matrix

Main steps:
1 We derive the per-phase per-unit equivalent circuit

2 We add the per-unit series impedance of transformer and transmission
lines.

3 We transform each voltage source in series with an impedance to an
equivalent current source in parallel with that impedance using Norton’s
theorem.

4 We expressed impedance values as admittance.

5 We use Kirchhoff’s current law to formulate the system equations.

Note: Current sources always flow into a node, hence power flow for
generators will be positive, power flow for motors and loads will be negative.
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3.2 Nodal current expressed via admittance matrix

Now, k -th component of nodal current vector I can be written as

Ik = Ykk V k +
∑

m∈Nk

YkmV m

= (Gkk + jBkk )Vk ejθk +
∑

m∈Nk

(Gkm + jBkm)Vmejθm

Note: In presence of transformers, admittance matrix is NOT necessarily
symmetric

Note: In presence of transformers, the series admittance Y km between
nodes k and m and the (k ,m)-th entry Ykm of admittance matrix do NOT
have the same values!
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3.2 Some comments on admittance matrix

For practical large power systems, admittance matrix is usually sparse

Sparsity typically increases with network size

This sparsity can be used effectively to design efficient numerical
algorithms to perform power flow computations and other calculations in
power systems

Example: a power system with 1000 buses and 1500 branches (=lines
and transformers) usually has a degree of sparsity greater than 99%,
i.e., less than 1% of entries of admittance matrix have nonzero values
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4 Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation

3 Nodal formulation of the network equations

4 Active and reactive power flows
Power flows on transmission lines
Power flows in multi-purpose two-port

5 Basic power flow problem

6 Solution of the power flow problem
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4 Power flows - Overview

We have discussed simplified versions of the power flow equations for
an individual transmission line (e.g., for lossless impedances)

Next, we derive expressions for the active and reactive power flows in
different network elements (transmission lines and transformers)

All discussed components possess linear behaviour with respect to the
relation between voltages and currents

Yet, in power systems one is usually interested in powers rather than
currents

The power flow equations are nonlinear algebraic equations

This makes computing their solution challenging
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4.1 Complex power flow on transmission line from node k
to node m

Ikm

jBsh
km

Y km

jBsh
km

Imk

V k V m

Assume shunt conductance of line is small → Y sh
km = jBsh

km

Complex current from node k to m

Ikm = Y km(V k − V m) + jBsh
kmV k

Complex power from node k to m

Skm = V k I∗km

= V k

(
Y ∗

km(V
∗
k − V ∗

m)− jBsh
kmV ∗

k

)
= Y ∗

kmVk ejθk (Vk e−jθk − Vme−jθm )− jBsh
kmV 2

k

,
ΕΕΝ442 — Dr Petros Aristidou — Last updated: September 19, 2023 33/ 75



4.1 Active and reactive power flows on transmission line
from node k to node m

Ikm

jBsh
km

Y km

jBsh
km

Imk

V k V m

Define short-hand θkm = θk − θm

Split Skm = Pkm + jQkm into real and imaginary part

Active power flow

Pkm = ℜ(Skm) = V 2
k Gkm − Vk Vm (Gkm cos(θkm) + Bkm sin(θkm))

Reactive power flow

Qkm = ℑ(Skm) = −V 2
k (Bkm + Bsh

km) + Vk Vm (Bkm cos(θkm)− Gkm sin(θkm))
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4.1 Active and reactive power flows on transmission line
from node m to node k

Ikm

jBsh
km

Y km

jBsh
km

Imk

V k V m

Power flows from m to k can be obtained in same way

Note that

sin(θmk ) = sin(−θkm) = − sin(θkm) cos(θmk ) = cos(−θkm) = cos(θkm)

Active power flow

Pmk = V 2
mGkm − Vk VmGkm cos(θkm) + Vk VmBkm sin(θkm)

Reactive power flow

Qmk = −V 2
m(Bkm + Bsh

km) + Vk VmBkm cos(θkm) + Vk VmGkm sin(θkm)
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4.2 Complex power flow in multi-purpose two-port from
node k to m

Imk

jBsh
km

Y kmjBsh
km

Ikm

1 akm φkm

V k V m

Complex current from node k to m

Ikm = jBsh
kmV k + Y km(V k − a−1

km e−jφkm V m)

Complex power from node k to m

Skm = V k I∗km

= V k

(
−jBsh

kmV ∗
k + Y ∗

km(V
∗
k − a−1

km ejφkm V ∗
m)

)
= Y ∗

kmVk ejθk
(

Vk e−jθk − a−1
km ejφkm Vme−jθm

)
− jBsh

kmV 2
k

= Y ∗
km

(
V 2

k − Vk Vm

akm
ej(θk−θm+φkm)

)
− jBsh

kmV 2
k
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4.2 Active and reactive power flows in multi-purpose
two-port from node k to node m

Imk

jBsh
km

Y kmjBsh
km

Ikm

1 akm φkm

V k V m

Active power flow

Pkm = V 2
k Gkm − Vk Vm

akm
(Gkm cos(θkm + φkm) + Bkm sin(θkm + φkm))

Reactive power flow

Qkm = −V 2
k (Bkm+Bsh

km)+
Vk Vm

akm
(Bkm cos(θkm + φkm)− Gkm sin(θkm + φkm))

For transmission line set akm = 1, φkm = 0

For in-phase transformer set Bsh
km = φkm = 0

For phase-shifting transfomer set Bsh
km = 0
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5 Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation

3 Nodal formulation of the network equations

4 Active and reactive power flows

5 Basic power flow problem
Basic bus types
Inequality constraints
Problem solvability

6 Solution of the power flow problem
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5 Power flows expressed via admittance matrix

Using admittance matrix, complex power injection at node k is

Sk = V k I∗k = Vk ejθk

(Gkk + jBkk )Vk ejθk +
∑

m∈Nk

(Gkm + jBkm)Vmejθm

∗

= Vk ejθk

(Gkk − jBkk )Vk e−jθk +
∑

m∈Nk

(Gkm − jBkm)Vme−jθm



Identifying real and imaginary part of above expression, yields active
and reactive power flows

Pk = Gkk V 2
k + Vk

∑
m∈Nk

Vm (Gkm cos(θkm) + Bkm sin(θkm))︸ ︷︷ ︸
=fk (θ1,...,θN ,V1,...,VN )

QK = −Bkk V 2
k + Vk

∑
m∈Nk

Vm (Gkm sin(θkm)− Bkm cos(θkm))︸ ︷︷ ︸
=gk (θ1,...,θN ,V1,...,VN )
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5 Variables in power flow problem

Node k

V k = Vk θk

Sk = Pk + jQk

Ski

Skr

Skm

Ssh
k

Consider a network with N ≥ 2 nodes

To each node k , k = 1, . . . ,N, there are 4
main variables associated

Vk voltage magnitude

θk voltage phase angle

Pk net active power (algebraic sum of
generation and load)

Qk net reactive power (algebraic sum of
generation and load)

We may also associate additional
operational constraints to a node k (e.g.,
generation or voltage limits)
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5.1 Basic bus types - Two main types

Main variables of power flow problem: Vk , θk , Pk and Qk

Usually some of these variables are known (i.e., fixed) and some are
unknown (i.e., need to be calculated via power flow computation)

Depending on which variables are known and which are unknown, we
can distinguish two main bus types

1) PQ bus: Pk and Qk are known; Vk and θk are calculated

2) PV bus: Pk and Vk are known; Qk and θk are calculated
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5.1 Basic bus types - Usage

PQ bus usually used to represent load buses without voltage control

Justification: active and reactive power demand of load bus is often
known (at least with certain accuracy)

PV bus bus typically used to represent generator buses with voltage
control

Justification: Synchronous machine usually equipped with automatic
voltage regulator (AVR) that adjusts excitation voltage such that terminal
voltage magnitude (or other voltage magnitude close to generator) is
kept at set value

PV bus also used to represent synchronous compensators

Justification: Synchronous compensators (also: synchronous
condensers) are synchronous machines that do not generate any active
power (besides internal losses) and that are used for reactive power and
voltage control

In practical power systems, majority of buses are PQ buses (typically
over 80%)
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5.1 Basic bus types - The slack bus

In addition to PQ and PV buses a third bus type is needed: the Vθ bus

1) Active power losses are unknown in advance → can not specify all active
power injections Pk at all buses before solving power flow equations

N∑
k=1

Pk = active power losses = fk (θ1, . . . , θN ,V1, . . . ,VN) =???

2) Voltage phase angles θk , θm only appear through differences
θkm = θk − θm in power flow equations

We can add arbitrary constant c to all phase angles in network without
changing electric state and power flows in network

→ Need to take phase angle at one bus as reference phase angle

At slack bus i active power balance equation replaced by

θi = 0 0: arbitrary value; any other constant would work as well
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5.1 Basic bus types - How to choose the slack bus?

At slack bus i , active power injection takes value

Pi = −
N∑

k=1,k ̸=i

Pk + p,

where all Pk in the sum are known and p is a variable that is determined
at the end of power flow computation to satisfy above active power
balance

→ Need to select a bus at which a generator is connected as slack bus
(= slack generator)
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5.1 Basic bus types - Slack bus: reactive power and data

What about reactive power losses at slack bus?
Not possible to specify reactive power injections at all buses

Qk not specified at PV buses (= for reactive power each PV bus acts as
slack bus)

→ No problem, as long as there is at least one PV bus

What data is needed at slack bus?
Need to specify either Vi or Qi

As generator is connected at slack bus, it is natural to specify voltage
magnitude Vi

→ Slack bus = Vθ bus
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5.1 Basic bus types - Summary
Bus configuration

Load bus Generator bus Load & generator bus Slack bus i
Vk θk

P l
k ,Q

l
k

Vk θk

Pg
k ,Q

g
k

Vk θk

Pg
k ,Q

g
kP l

k ,Q
l
k

Vi θi

Pg
i ,Q

g
i

Bus type

PQ bus PQ bus PV bus PQ bus PV bus Vθ bus

Power balance equations

P l
k = fk (. . .) Pg

k = fk (. . .) Pg
k + P l

k = fk (. . .) θi = 0

Q l
k = gk (. . .) Qg

k = gk (. . .) Vk = V r
k Qg

k + Q l
k = gk (. . .) Vk = V r

k Vi = V r
i

Unknowns

Vk , θk Vk , θk θk Vk , θk θk -

Note: With chosen convention in this module P l
k ≤ 0, Pg

k ≥ 0; Qk < 0 → ind. react. pow.
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5.2 Inequality constraints

Formulation of power flow problem typically involves a set of inequality
constraints to impose operating limits on certain variables

Examples: voltage mangnitude (PQ buses) and reactive power (PV
buses)

Mathematically these constraints can be formulated as

Qmin
k ≤Qk ≤ Qmax

k

Vmin
k ≤Vk ≤ Vmax

k

If bus limit is violated, then bus status has to be changed to enforce
equality constraint at limiting value

This is usually done by changing the bus type

Example: reactive power constraint violated at a PV bus → convert that
bus into PQ bus (then Q is specified and V becomes a variable)

Other constraints: line power flows, active power generation, phase
shifter angles, . . .
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5.3 Problem solvability

When defining the bus types in the power flow problem, it is important to
ensure that the resulting set of power balance equations contains the
same number of equations as unknowns

This is usually a necessary (though not always sufficient) condition for
solvability

Consider a system with N ≥ 2 buses and suppose that NPV are PV
buses, NPQ are PQ buses and 1 is the Vθ bus

State of system is fully specified when all voltage magnitudes and all
phase angles at all N buses are known → need to know 2N variables

Voltage magnitudes at NPV PV buses and at Vθ bus are given + phase
angle at Vθ bus is given
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5.3 Problem solvability

Hence, unknowns are phase angles and voltage magnitudes at NPQ PQ
buses and phase angles at NPV are PV buses, which gives a total of

Nunknown = 2NPQ + NPV

From the PV buses we get NPV active power balance equations

From the PQ buses we get NPQ active power balance equations and NPQ

reactive power balance equations → total number of equations is

Nequations = 2NPQ + NPV

Hence, Nunknown = Nequations and solvability condition is fulfilled
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6 Outline

1 Motivation and general power flow problem

2 Modelling of power system components for power flow computation

3 Nodal formulation of the network equations

4 Active and reactive power flows

5 Basic power flow problem

6 Solution of the power flow problem
Newton-Raphson method
Newton-Raphson method applied to power flow problem
Pθ and QV decoupling
DC power flow equations
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6 Numerical methods for solving the power flow problem

In practical cases, power balance equations can NOT be solved
analytically

Instead, numerical methods have to be used

There exist a variety of free (partially open source) and commercial
software packages to perform this task

Some of the most common software tools: Matpower, DigSilent
PowerFactory, PowerWorld, PSSE (Siemens)

In the following, we discuss an iterative numerical method that is often
used to solve the power flow problem: the Newton-Raphson method

We also discuss some standard assumptions employed to simplify and
speed-up the computations (Pθ-QV decoupling; DC power flow)
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6.1 Newton-Raphson method - One-dimensional case

To get a basic understanding of the method, we first take a look at the
one-dimensional nonlinear equation

f (x) = 0,

where x is the unknown and f (x) is a continuously differentiable scalar
function

Examples: f (x) = sin(x − 3), f (x) = x2 + 9, f (x) = ex

Objective: Given a starting value x (0), find appropriate root x∗, i.e., an x∗

that satisfies f (x∗) = 0

Newton-Raphson method provides an iterative algorithm to tackle this
problem

Let ν denote the iteration counter

Define a tolerance ϵ > 0 that determines the required minimal accuracy
for the solution
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6.1 Newton-Raphson method - Algorithm for
one-dimensional case

1) Set ν = 0 and choose an appropriate starting value x (0);

2) Compute f
(

x (ν)
)

;

3) Compare f
(

x (ν)
)

with tolerance ϵ:

If |f
(

x (ν)
)
| ≤ ϵ, then x = x (ν) is admissible solution to f (x) = 0

If |f
(

x (ν)
)
| > ϵ, then proceed to step 4;

4) Linearise f (x) at current solution point x (ν), i.e.,

f
(

x (ν) +∆x (ν)
)
≈ f

(
x (ν)

)
+ f ′

(
x (ν)

)
∆x (ν)

where f ′
(

x (ν)
)

denotes the first derivative of f evaluated at x (ν);

5) Solve f
(

x (ν)
)
+ f ′

(
x (ν)

)
∆x (ν) = 0 for ∆x (ν) and compute the update

for x as

x (ν+1) = x (ν) +∆x (ν) = x (ν) −
f
(

x (ν)
)

f ′ (x (ν))
;

6) Update iteration counter ν + 1 → ν and go to step 2.
,
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6.1 Newton-Raphson method - Example

Find the root of f (x) = 3x2 + 4x − 7 = 0

Initial guess x (0) = 4.5

Estimate after 3 iterations: x (3) = 1.06 (exact solution x∗ = 1)

x (0)

−20

20

40

60

80

x

f(x) f (x)
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6.1 Newton-Raphson method - Example

Find the root of f (x) = 3x2 + 4x − 7 = 0

Initial guess x (0) = 4.5

Estimate after 3 iterations: x (3) = 1.06 (exact solution x∗ = 1)

x (1) x (0)

−20

20

40

60

80

x

f(x) f (x)

f (x (0)) + f ′(x (0))
(

x − x (0)
)
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6.1 Newton-Raphson method - Example

Find the root of f (x) = 3x2 + 4x − 7 = 0

Initial guess x (0) = 4.5

Estimate after 3 iterations: x (3) = 1.06 (exact solution x∗ = 1)

x (2) x (1) x (0)

−20

20

40

60

80

x

f(x) f (x)

f (x (0)) + f ′(x (0))
(

x − x (0)
)

f (x (1)) + f ′(x (1))
(

x − x (1)
)
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6.1 Newton-Raphson method - Example

Find the root of f (x) = 3x2 + 4x − 7 = 0

Initial guess x (0) = 4.5

Estimate after 3 iterations: x (3) = 1.06 (exact solution x∗ = 1)

x (3) x (2) x (1) x (0)

−20

20

40

60

80

x

f(x) f (x)

f (x (0)) + f ′(x (0))
(

x − x (0)
)

f (x (1)) + f ′(x (1))
(

x − x (1)
)

f (x (2)) + f ′(x (2))
(

x − x (2)
)
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6.1 Newton-Raphson method - Remarks

Convergence rate (locally, i.e., for x (ν) close enough to actual root x∗)∣∣∣x∗ − x (ν+1)
∣∣∣ = 1

2

∣∣∣∣ f ′′(x∗)

f ′(x∗)

∣∣∣∣ · ∣∣∣x∗ − x (ν)
∣∣∣2

→ Locally, Newton-Raphson algorithm converges quadratically (this is
fast)

Dishonest Newton-Raphson algorithm
Use constant derivative f ′

(
x (ν)

)
= f ′(x (0)) in each iteration

Advantage: no need to recalculate f ′ for each iteration

Disadvantage: number of iterations required for convergence usually higher

Overall: often lower computational burden → faster convergence

May be useful simplification if only limited accuracy of solution required
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6.1 Newton-Raphson method - Multi-dimensional case

Now, we come back to the multi-dimensional case and consider the
n-dimensional system of nonlinear equations

f(x) = 0,

where

x =


x1

x2
...

xn

 , f(x) =


f1(x)

f2(x)
...

fn(x)


We assume that all fk : Rn → R are continuously differentiable functions

In principle, the same Newton-Raphson algorithm as in the
one-dimensional case can be used to compute the roots x∗ of f

Main modification: replace f ′ with Jacobian matrix J of f
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6.1 Newton-Raphson method - Jacobian matrix

Jacobian matrix of f defined as

J =
∂f
∂x

=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


Linearisation of f at x(ν) approximated by first-order Taylor expansion

f
(

x(ν) +∆x(ν)
)
≈ f

(
x(ν)

)
+ J

(
x(ν)

)
∆x(ν)

Hence, correction vector ∆x(ν) is solution to

f
(

x(ν)
)
+ J

(
x(ν)

)
∆x(ν) = 0

The above n-dimensional system of equations is linear and usually
solved via Gauss elimination (LU factorisation)
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6.1 Newton-Raphson method - Algorithm for
multi-dimensional case

1) Set ν = 0 and choose an appropriate starting value x(0);

2) Compute f
(

x(ν)
)

;

3) Compare f
(

x(ν)
)

with tolerance ϵ:

If |fk
(

x(ν)
)
| ≤ ϵ for all k = 1, . . . , n, then x = x(ν) is admissible solution

to f(x) = 0

Otherwise proceed to step 4;

4) Compute Jacobian matrix J
(

x(ν)
)

;

5) Update solution

∆x(ν) = −J−1
(

x(ν)
)

f
(

x(ν)
)

x(ν+1) = x(ν) +∆x(ν);

6) Update iteration counter ν + 1 → ν and go to step 2.
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6.2 Newton-Raphson method applied to power flow
problem (1)

We now apply the Newton-Raphson method to the power flow problem

We assume that there are N buses and that bus 1 is the slack bus (Vθ
bus)

Therefore, we define the state vector x of phase angles and voltage
magnitudes

x =

[
θ

V

]
Initial value x(0) (unless more precise estimate available)

At all buses: set voltage phase angle to 0◦ (=phase angle imposed at slack
bus)

At all PQ buses: set voltage magnitude to 1pu
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6.2 Newton-Raphson method applied to power flow
problem (2)

Next, we order the nonlinear function f such that the first components
correspond to the active power flows and the last ones to the reactive
power flows

f(x) =

[
∆P(x)

∆Q(x)

]
=

[
P(x)− Ps

Q(x)− Qs

]
=



P2(x)− Ps
2

...

PN(x)− Ps
N

Q2(x)− Qs
2

...

Qn(x)− Qs
n


Pk (x) and Qk (x) are the active, respectively reactive, power flow
equations at node k

Ps
k and Qs

k denote the known active, respectively reactive, power
setpoints at node k

If there are NPQ PQ buses, then n = NPQ + 1
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6.2 Newton-Raphson method applied to power flow
problem (3)

The load flow problem can now be written as

f =

[
∆P(x)

∆Q(x)

]
= 0

The functions ∆P(x) and ∆Q(x) are called active and reactive (power)
mismatches

Updates for x at iteration step ν + 1 are calculated from

J
(

x(ν)
)[

θ(ν)

V(ν)

]
+

[
∆P(x(ν))

∆Q(x(ν))

]
= 0

Jacobian of f evaluated at x(ν) is given by

J
(

x (ν)
)
=

[
∂∆P(x(ν))

∂θ
∂∆P(x(ν))

∂V
∂∆Q(x(ν))

∂θ
∂∆Q(x(ν))

∂V

]
=

[
∂P(x(ν))

∂θ
∂P(x(ν))

∂V
∂Q(x(ν))

∂θ
∂Q(x(ν))

∂V

]
,

where last equality follows since Ps and Qs are constant vectors
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6.3 Pθ and QV decoupling

Standard power flow problem involves variables at each network node k
Voltage amplitude Vk

Voltage angle θk

Net active power Pk

Net reactive power Qk

Transmission systems exhibit a strong coupling between P and θ as well
as V and Q

This property can be used to simplify and speed-up power flow
computations

,
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6.3 Power flows on lossless transmission line

Ikm jXkm Imk

V k V m

We consider a Π-model of a transmission line with zero resistance and
zero shunt admittance

For this scenario we already know that the active and reactive power
flows are given by

Pkm =
Vk Vm sin(θkm)

Xkm

Qkm =
V 2

k − Vk Vm cos(θkm)

Xkm
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6.3 Sensitivities of power flows on lossless transmission
line

The sensitivities between power flows Pkm, Qkm and states θk , Vk are
given by

∂Pkm

∂θk
=

Vk Vm cos(θkm)

Xkm
,

∂Pkm

∂Vk
=

Vm sin(θkm)

Xkm

∂Qkm

∂θk
=

Vk Vm sin(θkm)

Xkm
,

∂Qkm

∂Vk
=

2Vk − Vm cos(θkm)

Xkm

For θkm = 0, we observe ideal decoupling conditions, i.e.,

∂Pkm

∂θk

∣∣∣
θkm=0

=
Vk Vm

Xkm
,

∂Pkm

∂Vk

∣∣∣
θkm=0

= 0

∂Qkm

∂θk

∣∣∣
θkm=0

= 0,
∂Qkm

∂Vk

∣∣∣
θkm=0

=
2Vk − Vm

Xkm

→ For small voltage angles: Pθ and QV decoupling
Strong coupling between active power and voltage angle, as well as
between reactive power and voltage magnitudes

Weak coupling between active power and voltage magnitudes , as well as
between reactive power and voltage angle
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6.3 Sensitivities of power flows in transmission systems (1)

In HV transmission lines usually line inductance dominating component

In usual transmission system operating conditions θkm ≪ 90◦

→ Pθ and QV decoupling true in usual transmission system operation

Note: for large voltage angles decoupling does NOT hold!

Example: in neighbourhood of 90◦ sin(θkm) ≈ 0, cos θkm ≈ 1

→ Strong coupling between Q and V , as well as between P and θkm
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6.3 (Fast) Decoupled power flow computation (1)

Neglecting P − V and Q − V couplings allows to simplify
Newton-Raphson scheme

With decoupling assumption, power flow Jacobian becomes

J(x)dec =

[
∂P(x(ν))

∂θ
0

0 ∂Q(x(ν))
∂V

]

→ No coupling between updates of voltage magnitudes and phase angles!

Hence, state updates in Newton-Raphson method can be written as two
uncoupled equations

∂P
∂θ

∆θ(ν) +∆P(θ(ν),V(ν)) = 0

∂Q
∂V

∆V(ν) +∆Q(θν+1,V(ν)) = 0
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6.3 (Fast) Decoupled power flow computation (2)

Now, two systems of linear equations have to be solved, while overall
number of equations remains the same

But: usually number of operations to solve a system of linear equations
increases more than linearly with the system’s dimension

→ Need less operations to solve decoupled power flow than to solve
original coupled power flow

Convergence of decoupled power flow typically slower than that of
original power flow

Yet, gain in faster updates still yields faster overall solution time of
decoupled load flow (if system not too heavily loaded)

An important note regarding accuracy of the solution
No approximations have been made in functions P(x) and Q(x)

Only way to compute update has been simplified

→ If decoupled power flow converges, then it converges to a correct solution of
the power balance equations
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6.4 DC power flow equations - Motivation

Thus far, we have used exact expressions of power flow equations

Yet, as power flow equations are solved very frequently in power system
operation and planning it is preferable to also have a set of equations
that can be solved very fast

Such equations can be obtained by approximating the exact power flow
equations

The DC power flow equations are the most common approximation of
this type
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6.4 DC power flow equations - Assumptions and procedure

DC power flow equations are simplified equations obtained after
1 Neglecting reactive power flows in all branches

2 Neglecting active power losses in all branches

3 Assuming all voltage magnitudes equal to 1pu

4 Angle difference between buses is small
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6.4 DC power flow equations - Approximate equations (1)

Hence, we assume
1 Vk = 1 pu, k = 1, . . . ,N

2 Gkm = 0 for all k = 1, . . . ,N, m = 1, . . . ,N

3 Bkm = − 1
Xkm

for all k = 1, . . . ,N, m = 1, . . . ,N

4 akm = 1 (transformer ratio influences mainly reactive power flows)

Linearisation of active power flow from node k to node m

PDC
km =

∂Pkm

∂θk
θk +

∂Pkm

∂θm
θm

=
cos(θkm)

Xkm
θk +

− cos(θkm)

Xkm
θm

=
cos(θkm)

Xkm
θkm

≈ 1
Xkm

θkm (approximation valid for small phase angle differences)
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6.4 DC power flow equations - Approximate equations (2)

DC power flow equation from node k to node m

PDC
km =

θkm

Xkm

DC power flow equation analogous to Ohm’s law applied to a resistor
PDC

km is DC current

θk and θm are DC voltages at resistor terminals

Xkm is resistance

PDC
km Xkm PDC

mk

θk θm
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6.4 DC power flow equations - Approximate equations (3)

DC power flow at node k

PDC
k =

∑
m∈Nk

θkm

Xkm

Active power losses neglected

N∑
k=1

PDC
k = 0 ⇔ P1 = −

N∑
k=2

PDC
k

→ No slack bus needed to compensate for unknown active power losses
(but still need angle reference bus)

DC power flow equations can be extended to include phase shifters (not
done here)
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6.4 DC power flow equations - Matrix form

DC power flow can be written in matrix form as follows

PDC = A′θ,

where
P is vector of net active power injections

θ is vector of voltage angles

A′ is nodal admittance matrix with elements

Akm = −X−1
km

Akk =
∑

m∈Nk

X−1
km

Matrix A′ is singular → no unique solution for θ

To make system of equations solvable, need to (arbitrarily) chose one
bus as angle reference and remove row and column associated with that
bus from A′; we shall call that reduced matrix A
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6.4 Circuit interpretation of DC power flow model

21

3

PDC
2PDC

1

PDC
3

2

R12

1

R23R13

3

I1

I2

I3

Linearised model PDC = A′θ can be interpreted as network of resistors
fed by DC current sources

Then PDC are the nodal DC current injections, θ the nodal DC voltages
and A′ is the nodal conductance matrix

Angle reference bus = DC voltage reference bus = Bus 1
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6.4 Summary

Power flow computations are a fundamental tool in power system
operation, analysis and planning

Formulating the power flow problem requires
Identifying the bus type of each node in the network (PQ, PV, Vθ)

Setting up the power balance equations

Determining necessary constraints

Power flow equations can usually only be solved numerically

There are many software tools available to do this

The Newton-Raphson method is a standard numerical method to solve
the power flow equations

Computation of power flow equations can also be simplified via
Pθ and QV decoupling

DC power flow

,
ΕΕΝ442 — Dr Petros Aristidou — Last updated: September 19, 2023 75/ 75


	Motivation and general power flow problem
	Modelling of power system components for power flow computation
	Multi-purpose two-port for power lines and transformers
	Shunt elements
	Loads
	Generators

	Nodal formulation of the network equations
	Net complex current injection
	Expressing currents and power flows via admittance matrix

	Active and reactive power flows
	Power flows on transmission lines
	Power flows in multi-purpose two-port

	Basic power flow problem
	Basic bus types
	Inequality constraints
	Problem solvability

	Solution of the power flow problem
	Newton-Raphson method
	Newton-Raphson method applied to power flow problem
	Pθ and QV decoupling
	DC power flow equations


	pbs@ARFix@29: 
	pbs@ARFix@28: 
	pbs@ARFix@27: 
	pbs@ARFix@26: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 


