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Abstract—This paper proposes an algorithm for exploiting
the localized response of power system components to accel-
erate dynamic simulations. During the simulation, components
marginally participating to the system dynamics are charac-
terized as latent and their dynamic models are replaced by
much simpler equivalents. At the same time, components with
significant dynamic activity are characterized as active and
their original dynamic models are used. Based on the criterion
proposed, components switch status between active and latent
to increase performance while retaining accuracy. Two realistic
test systems, a medium-scale and a large-scale, are used for the
performance evaluation of the proposed method.

Index Terms—differential-algebraic equations, dynamic simu-
lation, Newton method, latency, localization, digital signal pro-
cessing

I. INTRODUCTION

Dynamic simulations are used in industry and academia to
check the response of electric power systems to various distur-
bances. They find application in simulator-based design of new
control schemes and components, operator training in control
centers, dynamic security assessment, hardware/software-in-
the-loop studies, etc.

Dynamic power system models represent complex electric
equipment (generators, motors, loads, wind turbines, etc.) that
interact through the network. Usually, the equipment models
are described by non-linear, stiff and hybrid Differential and
Algebraic Equations (DAEs), while the network by linear
algebraic equations [1]. A large interconnected power system
may involve hundreds of thousands of DAEs spanning over
different time scales and undergoing many discrete transitions
imposed by limiters, switching devices, etc. Due to the huge
size and complexity of these models, dynamic simulations are
often extremely time consuming.

In the last decades, the speed of dynamic simulations
has improved, mainly due to the performance of computing
equipment and the development of new simulation algorithms.
However, for many time-critical security applications the per-
formance of dynamic simulations poses a serious obstacle.
As a result, many security analysis softwares resort to static
or quasi-steady-state simulations which are faster but use
simplified dynamic or static models [2]. Their main drawback
is that the model simplification is performed beforehand and

cannot be changed during the simulation. Furthermore, a
universal equivalent that would be valid for all power system
dynamic phenomena, to the authors’ knowledge, is still to be
found.

In this paper we exploit the localized nature of power system
response to a disturbance to provide faster dynamic simula-
tions while preserving accuracy. The concept of localization
results from the observation that in large power systems a
disturbance affects a small number of components while the
remaining are unaffected or slightly influenced [3]. Similar
observations have been made in other fields [4].

In brief, during the simulation the proposed algorithm
detects the components marginally participating to the system
dynamics (latent) and replaces their dynamic models with
much simpler and faster to compute equivalents. At the same
time, the full dynamic model is used if the algorithm detects
that a component exhibits significant dynamic activity (active).
The algorithm employs simple and fast to compute metrics
to classify each component into active or latent. Finally, the
classification criterion can be tuned to obtain the desired
balance between accuracy and speed.

The paper is organized as follows: in Section II we present
the dynamic modeling of the power system. In Section III,
we explain the derivation of the equivalent model used to
replace latent components. In Section IV, we introduce the
metrics and the criterion used for the categorization of the
components. The simulation results are reported in Sections
V and VI, followed by closing remarks in Section VII.

II. DYNAMIC MODELING OF COMPONENTS

Let the power system be decomposed into the network and
a number of components, as sketched in Fig. 1. For reasons
of simplicity, all components connected to the network, pro-
ducing or consuming power are called injectors.

On the one hand, each injector i is described by a system
of non-linear Differential-Algebraic Equations (DAE) [1]:

Γiẋi = Φi(xi,V ) (1)

where V is the vector of network voltages, xi is the state
vector containing differential and algebraic variables of the
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Figure 1. Decomposed Power System

i-th injector and Γi is a diagonal matrix with

(Γi)`` =

{
0 if the `-th equation is algebraic
1 if the `-th equation is differential.

The current variables of the i-th injector introduced in the
network relate to its states through:

Ii = Cixi (2)

where Ci is simply a matrix selecting the current (Ii) from
within the extended state vector xi.

On the other hand, the linear algebraic network equations
are described by:

0 = DV − I = DV −
n∑

i=1

Cixi = g(x,V ) (3)

For the purpose of numerical simulation, the injector DAE
systems (1) are algebraized using a differentiation formula
(such as Trapezoidal Rule, Backward Differentiation Formula,
etc.) to get the corresponding non-linear algebraized systems:

0 = fi(xi,V ), i = 1, . . . , n. (4)

At each discrete time-step tn the non-linear algebraized
injector equations (4) are solved together with the network
equations (3) using a Newton method to compute the state
vectors x(tn) and V (tn). At the k-th Newton iteration, the
linearized injector systems have to be solved simultaneously
with the linear network equations (i = 1, . . . , n):

Ai∆xi + Bi∆V = −f i(x
k−1
i ,V k−1) (5)

D∆V − ∑n
i=1 Ci∆xi = −g(xk−1,V k−1) (6)

The solution is computed using the decomposed and accel-
erated Newton scheme [5]. In brief, the injector equations (5)
are solved with respect to ∆xi and is introduced in (6) to
obtain the following reduced system:

(D +

n∑
i=1

CiA
−1
i Bi)∆V =− g(xk−1,V k−1) (7)

−
n∑

i=1

CiA
−1
i f i(x

k−1
i ,V k−1)

This reduced system is solved to obtain the voltage correction
∆V which is backward substituted in (5) to get the state
corrections ∆xi.

While this decomposition method is numerically equivalent
to an integrated Newton scheme applied on equations (3) and
(4), it provides access to the individual injector models and
allows their separate treatment [6]. This feature is exploited by
the localization algorithm to switch between full and simplified
models during the simulation without expensive operations
related to matrix computing and factorizing.

III. EQUIVALENT MODEL OF LATENT INJECTORS

When an injector is declared latent, its detailed dynamic
model (1) is replaced by a smaller and faster to compute linear
model. This is derived from the linearized equations (5) when
ignoring the internal dynamics, that is fi(x

k−1
i ,V k−1) ' 0,

and solving for the state variation ∆xi:

∆xi ' −A−1
i Bi∆V

The corresponding current variation is obtained from (2) as:

∆Ii = −CiA
−1
i Bi∆V = −Gi∆V (8)

where Gi is a sensitivity matrix relating the current (∆Ii)
with the voltage (∆V ) variation.

Selecting an arbitrary instant t∗, the linear relation (8) can
be rewritten as:

Ii(tn) = Ii(t
∗)−Gi(t

∗) [V (tn)− V (t∗)] (9)

for any discrete time tn ≥ t∗.
The linear model (9) is a valid estimate of the full dynamic

model (1) when the injector shows low dynamic activity (thus
the term fi(x

k−1
i ,V k−1) in (5) can be ignored) and only for

small deviations around the linearization point (thus Gi can
be considered constant).

IV. LOCALIZATION ALGORITHM

The essence of the algorithm lies in its ability to detect the
status switching of injectors. During the dynamic simulation
the state vector values x(t) and V (t) are known for t ≤ tn,
with tn the last computed discrete time. The injector classifi-
cation criteria have to be robust and based only on currently
available information. Furthermore, as the algorithm aims for
higher simulation performance, the criteria computations need
to be fast and use as little memory as possible.

A. Monitoring Variable and Metrics

Since the injectors interact with the network and between
them through the current and voltage changes (see Eq. 3),
power flow variations can be used as an indication of dy-
namic activity. Therefore, the variation of the apparent power
(Si =

√
Pi

2 +Qi
2) flowing in each injector was naturally

selected as the monitoring variable representative to the injec-
tor dynamic activity. Alternatively, more detailed information
could be extracted from the active and reactive powers but at
the cost of doubling the computing effort and memory usage.



Simply stated, an injector is declared latent when its appar-
ent power Si has “not changed significantly for some time”
or, in other words, exhibits small variability. The Si values are
available as time-series samples. Thus, traditional methods for
analyzing time series data can be employed to characterize the
variability of Si over a pre-specified, moving, time window.

The choice of using a moving time window and not the
entire history aims at disregarding the oldest “behavior” of
an injector and involving only recently observed dynamics.
On the other hand, if the time window is very small, smooth
variations may not be detected.

The main characteristics extracted from the time series are
the sample average value and variance (or standard deviation).
In particular, the standard deviation is the measure of volatility
that shows how much variation or dispersion exists from the
average. A small standard deviation indicates that the data
points tend to be very close to the average, whereas high
standard deviation indicates that the data points are spread out
over a large range of values. Consequently, a small standard
deviation of Si is an indication that the i-th injector exhibits
low dynamic activity and can be considered latent.

After an injector is classified as latent at time t∗, the appar-
ent power is no longer dictated by the dynamic model (1) but
by the linear model (9), affected only by the deviation of the
voltage. Therefore, we cannot rely on the standard deviation
to switch the injector back to active mode since slow voltage
changes can gradually “drift” the injector’s operating point
away from the reference without the standard deviation ever
increasing. To avoid this, we monitor the absolute deviation
of the apparent power from its reference value Si(t

∗). If the
absolute variation is bigger than a tolerance εL, meaning that
the model has moved away from the linearization point, the
injector returns to active mode.

B. Signal Processing

Large power systems may involve thousands of injectors,
making it inefficient to keep all injector apparent powers in
memory over the moving time window. Furthermore, calculat-
ing the exact average and standard deviation values of the time-
window samples at each time-step leads to complex book-
keeping and time consuming computations. To avoid this,
an approximation is considered, which originates from real-
time digital signal processing where computing and memory
resources are scarce [7]. Its applications include audio/video
processing, speech recognition, embedded systems, etc.

When a new sample Si(tn) is computed, the average value
is obtained as the weighted sum of the new sample and the
previous average value Si,av(tn−1) according to:

Si,av(tn) = (1− λ1) ∗ Si,av(tn−1) + λ1 ∗ Si(tn) (10)

where λ1 is a “forgetting factor” with 0 ≤ λ1 ≤ 1.
Next, the difference between the new value and the com-

puted average, i.e. 4Si(tn) = Si(tn) − Si,av(tn), is used to
calculate the approximate variance:

Si,var(tn) = (1− λ2) ∗ Si,var(tn−1) + λ2 ∗ 4Si(tn)2 (11)
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Figure 2. Actual and average apparent power

with 0 ≤ λ2 ≤ 1.
Finally, the standard deviation is obtained as:

Si,std(tn) =
√
Si,var(tn) (12)

and must be compared to a pre-defined threshold εL ≥ 0 to
decide whether the injector is latent or not.

This procedure is equivalent to passing the input digital
signal Si(tn) through a single-pole DC blocking high-pass
filter (with a pole at λ1) and then sending the resulting signal
to a root mean square detector (whose response time is set by
λ2) to measure the signal’s variability once its central trend
has been removed [8].

Tuning the latency criterion requires setting the values of
λ1, λ2 and εL. The parameter λ1 sets the time window
of observation for averaging. That is, a smaller λ1 value
extends the observation window while a larger curtails it. The
parameter λ2 sets the response time to the changes 4Si, that
is, a smaller λ2 value makes the criterion less responsive.
Finally, the parameter εL is the allowed tolerance (in MVA)
for classifying the injector (εL = 0 results in fully accurate
simulation).

The three parameters have to be tuned for the system of
concern. However, once tuned, they can be used for any sim-
ulated disturbance. In particular, λ1 and λ2 depend on the time
step size chosen for the simulation which is equal to the time
interval between two samples. If a larger time step size than
the one used for tuning is selected, the observation window
and response time increase, leading to a more conservative
criterion. Thus, it has been found appropriate to tune λ1 and
λ2 for the smallest time-step used and keep them constant.
The selection of the last parameter εL relies mainly on the
approximation we are disposed to accept. If the power system
includes injectors of both very small and very large powers
then εL must remain small to keep the error bounded. On the
other hand, if the system involves similarly sized injectors,
then εL can be increased without introducing big errors.

C. Illustrative Example

An example of the monitoring variable Si of an injector
after a disturbance can be seen in Fig. 2. In the same figure its
average calculated using Eq. (10) with λ1 = 0.01 is displayed.
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Figure 3. Difference and Standard Deviation

Figure 3 shows the difference 4Si and the standard deviation
calculated using Eq. (12) with λ2 = 0.01.

D. Switching Algorithm

The decision for switching between active and latent mode
is taken after computing each time step tn. Then, the selected
models are used for the computation of the states at tn+1.
During the Newton iterations, the models chosen for latent
and active injectors are kept unchanged as switching models
could perturb the iterations and cause divergence.

The complete procedure is given by Algorithm 1. This algo-
rithm was implemented in the academic simulation software
RAMSES, developed at the University of Liège.

Algorithm 1 Injector switching criterion at discrete time tn
if injector i is active then

Calculate Si(tn) using dynamic model (5)
Calculate Si,av(tn) and Si,std(tn) using Eqs. (10-12)
if Si,std(tn) ≤ εL then

t∗ = tn
injector i ←latent

end if
else

Calculate Si(tn) using linear model (9)
if | Si(tn)− Si,av(t∗) |≥ εL then

injector i ←active
end if

end if

E. Early Simulation Halting

When a dynamic response is stable, the system reaches
a steady state after all dynamics have faded. As the system
approaches steady state, more and more injectors exhibit low
dynamic activity and switch to latent. If at some point all
injectors become latent, the simulation will involve only the
linear algebraic systems (3) and (9), thus, no further dynamic
activity can be observed.

This feature can be exploited to avoid unnecessary com-
putations when the system has already reached steady state.
For example, it can find application in dynamic security
assessment as an early stopping criterion of stable simulations.
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Figure 4. 2204-bus system: Voltage evolution on bus near fault

Table I
RESULTS WITH THE 2204-BUS SYSTEM

εL Execution Time Speedup Aver. Verr Aver. Si,err

(MVA) (s) (times) (pu) (%)
0.0 77 - - -
0.1 55 1.41 3E-5 0.09
0.5 46 1.69 3E-4 0.21
1.0 39 1.96 5E-4 0.48

V. RESULTS WITH THE 2204-BUS SYSTEM

This section reports on results obtained with the medium-
size model including 2204 buses, 2919 branches and 135
power plants with a detailed representation of the synchronous
machine, its excitation system, automatic voltage regulator,
power system stabilizer, turbine and speed governor. The
model also includes 976 dynamically modeled loads. The
resulting DAE system has 11774 states.

The disturbance consists of a short circuit lasting 7 cycles,
that is cleared by opening a line. The system is simulated over
a period of 240 s with a time step size of 1 cycle. The system
evolves in the long term under the effect of 1076 load tap
changers, 24 automatic shunt compensation switching devices
as well as overexcitation limiters. The same simulation was
performed with four different values of the latency tolerance
εL while keeping the other parameters (λ1 = 0.001, λ2 =
0.01) unchanged.

As discussed in Section IV-B, λ1 was tuned to provide
a moving averaging window of approximately 1000 cycles.
Similarly, λ2 was tuned with a response time of approximately
100 cycles. The values chosen offer a robust but not very
nervous variability detection. Finally, εL was varied between
0 and 1 MVA to show its effect on speed and accuracy.

Table I shows the speedup and average error from using the
localization scheme. For a conservative tolerance of εL = 0.1
MVA the simulation runs 1.41 times faster. At the same time,
the average voltage error at the bus nearest to the fault is
3E− 05 pu and for the apparent power of a power plant near
the fault the average error is09%. As foretold, increasing the
tolerance leads to higher simulation performance (up to 1.96
times faster) but bigger errors. Still, even with a large tolerance
of εL = 1 MVA the simulation accuracy is very good.

Figures 4 and 5 show the voltage evolution at the bus nearest
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Figure 5. 2204-bus system: Voltage evolution on bus near fault
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Figure 6. 2204-bus system: Evolution of synchronous machine apparent
power (latent mode shown in gray)

to the fault with and without localization for two different
tolerance levels. In the first figure, the two evolutions are for
every practical application indiscernible with a maximum error
of 0.0003 pu appearing around t = 94 s (see zoom in Fig. 4).
This error coincides with the switching of a large shunt reactor
by an automatic device responding to the voltage drops. The
switching time is shifted by a few milliseconds causing the
appearance of the maximum error. These devices, like load
tap changers, are discrete devices with response times in the
order of 10 seconds. Therefore, a shifted by a few milliseconds
switching has no practical consequence. In the second figure,
the error is increased because of the higher tolerance but
nevertheless the average error remains very small.

Likewise, Figs. 6 and 8 show the apparent power of a
medium-size power plant close to the fault. The power plant
is identified as latent (i.e. its full model is replaced by the
sensitivity model) in the time intervals shown in gray and
active in the rest. The vertical black lines show the transitions
between modes. More specifically, the plant gets back to active
mode once for a short period of time at t = 156 s (see zoom
in Fig. 6). In the second figure the injector gets latent faster
because of the higher latency tolerant. As with the voltage, the
bigger absolute error in both figures coincides with shifted in
time automatic shunt compensation switching.
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Figure 7. 2204-bus system: Relative error of apparent power
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During the short-term dynamics and up to 20 s the local-
ization criterion correctly detects the high dynamic activity
in the system and keeps full accuracy. This can be easily
seen in Fig. 7 with zero error in this period. As the injectors
located away from the fault start becoming latent, some error is
introduced with maxima (shown as peaks in Fig. 7) appearing
at shunt compensation switching times. The maximum state
deviation appears in components closer to the disturbance area.
The reason for this is that these, more active components,
accumulate the small errors introduced by the injectors already
latent. More advanced algorithms [9] can be used to quantify
the overall deviation but are very hard to compute when the
system under consideration involves tens or even hundreds of
thousands of states.

As discussed in Section IV-E, the algorithm can detect the
reaching of steady state and the lack of dynamic activity and
signal an early termination. In fact, for the same simulated
disturbance with εL = 0.1 MVA, if the simulation time is
increased to 300 s it is observed that all injectors become
latent around 283 s. At that moment the simulation is halted.

VI. RESULTS WITH THE 15226-BUS SYSTEM

This section reports on results obtained with the large-scale
system described in [5], set up in the context of the FP7
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Table II
RESULTS WITH THE 15226-BUS SYSTEM

εL Execution Time Speedup Aver. Verr Aver. Si,err

(MVA) (s) (times) (pu) (%)
0.0 806 - - -
0.1 300 2.69 5E-5 0.01
0.5 246 3.28 3E-4 0.05
1.0 222 3.63 1E-3 0.21

European PEGASE project [10]. The model includes 15226
buses, 21765 branches and 3483 power plants with a detailed
representation of each synchronous machine, its excitation
system, automatic voltage regulator, power system stabilizer,
turbine and speed governor. The model also includes 7211
dynamically modeled loads. The resulting DAE system has
146239 states.

The disturbance consists of a short circuit lasting 5 cycles,
that is cleared by opening two double-circuit lines. The system
is simulated over a period of 240 s with a time step size of 1
cycle. The system evolves in the long term under the effect of
load tap changers as well as overexcitation limiters. The same
simulation was performed with four different values of latency
tolerance εL while keeping the other parameters unchanged.

Table II shows the speedup and average error from using the
localization scheme. For a conservative tolerance of εL = 0.1
MVA the simulation runs 2.69 times faster. At the same time,
the average voltage error at the bus nearest to the fault is
5E− 05 pu and for the apparent power of a power plant near
the fault the average error is 0.01%. As foretold, increasing the
tolerance leads to higher simulation performance (up to 3.63
times faster) but bigger errors. Still, even with a large tolerance
of εL = 1 MVA the simulation accuracy is very good. Figure 9
shows the voltage evolution at the bus nearest to the fault
with and without localization and Fig. 10 the corresponding
absolute error between them. The average error is small with
spikes appearing close to shifted in time load tap changes.

It has to be noted that the large-scale system benefits more
from the localization algorithm in terms of performance. This
is to be expected as larger interconnected systems exhibit a
comparatively more localized response to disturbances. The
effects usually do not propagate to remote parts but if they
do, the proposed algorithm would automatically switch the
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Figure 10. 15226-bus system: Absolute error of voltage

involved components back from latent to active.

VII. CONCLUSION

An algorithm has been proposed to exploit localization
and accelerate dynamic simulations. This is done by targeted
(based on the dynamic activity) substitution of injector dy-
namic models with smaller and faster to compute equivalents.
The error introduced by the equivalents is bounded and can be
easily controlled, through the latency tolerance εL, to balance
desired speed and accuracy. The method was tested on two
power system models yielding significant simulation speedup
with a minor effect on accuracy.

As a result, the localization algorithm can be used in
dynamic security assessment to provide higher performance
both from the simulation speedup as well as its ability to
identify when the system reaches steady state and halt the
simulation. It can be easily combined with parallelized con-
tingency simulations to shorten the overall computing time.
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