Dynamic Simulation of Large-Scale Power Systems Using a Parallel Schur-Complement-Based Decomposition Method

Abstract

Power system dynamic simulations are crucial for the operation of electric power systems as they provide important information on the dynamic evolution of the system after an occurring disturbance. This paper proposes a robust, accurate and efficient parallel algorithm based on the Schur complement domain decomposition method. The algorithm provides numerical and computational acceleration of the procedure. Based on the shared-memory parallel programming model, a parallel implementation of the proposed algorithm is presented. The implementation is general, portable and scalable on inexpensive, shared-memory, multi-core machines. Two realistic test systems, a medium-scale and a large-scale, are used for performance evaluation of the proposed method.

Publication
IEEE Transactions on Parallel and Distributed Systems
Petros Aristidou
Petros Aristidou
Assistant Professor