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Abstract—A formulation is proposed in which an AC-DC
system is modeled as a combination of AC grids, DC grids,
injectors, AC two-ports and AC/DC converters, respectively. This
modular modelling facilitates the dynamic simulation of future
complex AC/DC systems. Furthermore, it can be exploited by
the solver, which performs less operations on components with
lower dynamic activity, and offers parallel processing of the time
simulation. This approach is illustrated on a test system in which
a multi-terminal DC grid connects two asynchronous AC systems,
allows frequency support between them, and acts as emergency
control against AC voltage instability.

Index Terms—Time simulation, phasor approximation, AC/DC
systems, multi-terminal DC system, domain decomposition meth-
ods, Schur complement, parallel processing.

I. INTRODUCTION

The increasing opening of electricity markets, the decom-

missioning of traditional power plants, and the harvesting

of sustainable energy from remote (in particular off-shore)

locations will result in larger power transfers over longer

distances. This imperative evolution of transmission grids,

as well as the progress made in Voltage Source Converters

(VSCs), has triggered a vibrant development of High-Voltage

Direct Current (HVDC) systems [1], [2]. As a result, more and

more HVDC interconnections are in operation or planned.

While point-to-point links have become very common [2],

Multi-Terminal DC (MTDC) systems are the next step en-

visaged [3], [4]. They will result in more complex HVDC

network topologies. An illustrative example is sketched in

Fig. 1 where AC grids are shown with gray boxes, and DC with

white. The system includes two point-to-point HVDC links.

One of them allows power exchange (and possibly frequency

support) between the asynchronous AC systems #1 and #2.

The other link connects a wind park to AC system #2. The

overlay MTDC grid #1 serves as a backbone reinforcing AC

system #1 by offering an alternative path for power transfers

between remote locations inside that system. The MTDC grid

#2 collects the energy produced by two off-shore wind parks

but also allows power transfers between the AC systems #1

and #2. The generators within each wind park are connected

through AC cables which make up a separate AC grid. The

latter can be modeled in detail or replaced by a single, isolated

AC bus if the generators are lumped into one equivalent.

AC grid # 1 AC grid # 2

MTDC grid # 2

MTDC grid # 1

AC/DC converter

Figure 1: Illustrative example of combined AC-DC system

In the future, the need for dynamic simulation of combined

AC and DC systems will keep increasing [5]. For instance,

HVDC systems are expected to take a greater part in frequency

and voltage control [6]. Furthermore, the response of AC/DC

converters to nearby faults in AC grids must be taken into

account when assessing system security.

To reproduce the dynamics of AC/DC converters, Electro-

Magnetic Transient (EMT) simulation remains the reference in

terms of accuracy. However, the EMT models are not suited

to the large-scale studies and long-term dynamics considered

in this paper, for which the phasor approximation is preferred.

To anticipate the future developments, while accommodat-

ing the above mentioned diversity of HVDC system topolo-

gies, there is a need for a flexible AC-DC system dynamic

modelling. Models of point-to-point HVDC links have been

available for quite some time in industry-grade dynamic sim-

ulation software [7]. While their developers certainly work to-

wards incorporating MTDC systems, there are, to the authors’

knowledge, few publications devoted to such developments.

This paper proposes a modular formulation making it easy

to develop, extend and maintain models for an MTDC topol-

ogy of arbitrary complexity.

Furthermore, the modular modelling can be exploited by

the dynamic simulation solver. In this respect, a Schur-

complement-based formulation is described in this paper,

which allows the individual components to be processed

separately during the simulation. This makes it possible, for

instance, to update Jacobians locally and to perform less New-



ton iterations on components with lower participation in the

dynamic response. It also paves the way to parallel processing

of the computations to further accelerate the simulations.

These features are present in RAMSES, a research software

developed at the University of Liège [8], whose results are

presented in this paper.

II. MODULAR MODELLING OF AN AC-DC SYSTEM

A. AC and DC transmission sub-networks

Modular modeling is built upon the concept of the trans-

mission grid being an arbitrary combination of (disjoint) AC

and DC sub-networks. In the case of Fig. 1, for instance, the

transmission grid can be considered to include five AC and

four DC sub-networks.

Under the phasor approximation, AC networks are repre-

sented by the well-known algebraic equations:

[
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B G

]

︸ ︷︷ ︸
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︸ ︷︷ ︸

−
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= 0

D vac

(1)

where G (resp. B) is the nodal conductance (resp. suscep-

tance) matrix, vx and vy are vectors of real and imaginary

components of the bus voltage, and ix and iy are the corre-

sponding injected current components.

Similarly, by neglecting the series inductances of DC lines

and cables, and accounting for their shunt capacitances in the

AC/DC converters [9], the DC grid is represented by a network

of resistances, modelled by:

Gdcvdc − idc = 0 (2)

where Gdc the nodal conductance matrix, vdc is the vector of

DC bus voltages, and idc the vector of injected DC currents.

This encompasses any AC-DC grid topology. If there are

several disjoint AC sub-networks, the G and B matrices have

a block-diagonal structure. The same holds true for Gdc in

case of disjoint DC sub-networks. In the system of Fig. 1, for

instance, G and B have five nonzero diagonal blocks, while

Gdc has four such blocks.

B. Equipment connected to AC or DC grids

Modularity is also obtained by matching any equipment

connected to the AC or DC grids with one of the following

three generic components:

• an injector connected to a single AC bus

• an AC two-port connecting two AC buses

• an AC/DC converter connecting one AC and one DC bus.

Each component is modelled by a system of Differential-

Algebraic Equations (DAEs). Including algebraic equations

and states offers remarkable modelling flexibility. In particular,

each component model interfaces with the network through

the currents injected into it, involved in the DAEs as algebraic

states. This allows processing the components separately dur-

ing the simulation, as mentioned in the Introduction.

Each of the above three generic components is considered

hereafter in some more detail, with reference to Fig. 2.

vxk vyk

ixj iyj

xjj-th injector xj

vxk vyk vxℓ vyℓ

j-th AC two-port

ixoj iyoj ixej iyej

AC grid AC grid

AC grid DC grid

vxk vyk
ixj iyj vdcℓ

idcj

j-th AC/DC converter

xj
=∼

Figure 2: The three generic components

C. Injector

Synchronous machines, synchronous condensers, static var

compensators, motors, static loads, wind-turbine generators,

etc. are well-known examples of injectors. The j-th injector

attached to the k-th AC bus is modelled by:

Γjẋj = Φj(xj , vxk, vyk) (3)

where xj is a state vector including both differential and alge-

braic variables, vxk and vyk are the bus voltage components.

In this and subsequent models, Γj is a diagonal matrix with

(Γj)ℓℓ = 0 if the ℓ-th equation is algebraic, and one otherwise.

The use of Γj provides additional modelling flexibility to

handle nonlinearities by changing a differential equation into

an algebraic one during the simulation, and conversely [10].

Formally this corresponds to changing a diagonal entry of Γj

from one to zero, and conversely. This feature is available in

the solver of RAMSES.

Note that xj includes in particular the components of the

current injected in the connection bus, i.e. xj = [ixj iyj . . .]
T

.

D. AC two-port

While an injector is attached to a single AC bus, an AC two-

port is aimed at connecting two AC buses. Thus, the generic

model of j-th AC two-port connected to the k-th and l-th AC

buses is:

Γjẋj = Φj(xj , vxk, vyk, vxl, vyl) (4)

xj includes the components of the currents injected in both

AC buses, i.e. xj = [ixoj iyoj ixej iyej . . .]
T

where subscript

o denotes the origin and e the extremity.

E. AC/DC converter

An AC/DC converter connects one AC with one DC bus.

Thus, the j-th AC/DC converter connecting the k-th AC bus

and the l-th DC bus is modelled by:

Γjẋj = Φj(xj , vxk, vyk, vdcl) (5)

where vdcl is the DC bus voltage. xj includes the current

components: xj = [ixj iyj idcj . . .]
T

.

Note that a point-to-point DC link can be modelled either

as an AC two-port, or as the combination of two AC/DC

converters and one DC line. In the latter case (sketched in

Fig. 1), a separate DC sub-network with two buses is created.



III. SOLUTION ALGORITHM

Let the AC network equations (1) be rewritten as:

0 = Dvac −

N∑

j=1

Cjxj , gac(x,vac) (6)

where N is the total number of injectors, AC two-ports and

AC/DC converters in the system. Cj is a matrix with zeros and

ones whose purpose is to extract the AC current components

from the various xj state vectors and add them to the proper

network equations.

Similarly, the DC network equations (2) are rewritten as:

0 = Gdcvdc −

Ndc∑

j=1

Ejxj , gdc(x,vdc) (7)

where Ndc is the number AC/DC converters, and Ej is also

a matrix with zeros and ones.

For the purpose of numerical simulation, the DAE systems

(3), (4) and (5) are algebraized using a differentiation formula,

such as Trapezoidal Rule or Backward Differentiation Formula

(BDF). This yields the algebraized equations in compact form:

0 = fj(xj ,vac,vdc), j = 1, . . . , N. (8)

At each discrete time tm the nonlinear equations (8) are

solved together with the AC-DC network equations (6, 7) using

a Newton method to obtain the vectors xj(tm), vac(tm) and

vdc(tm). At the k-th Newton iteration, the following linear

equations have to be solved (j = 1, . . . , N ):

Aj∆xk
j +

[
Bj Hj

]
[
∆vk

ac

∆vk
dc

]

= −fj(x
k−1

j ,vk−1

ac ,vk−1

dc ) (9)

D∆vk
ac −

N∑

j=1

Cj∆xk
j = −gac(x

k−1,vk−1

ac ,vk−1

dc ) (10)

Gdc∆vk
dc −

Ndc∑

j=1

Ej∆xk
j = −gdc(x

k−1,vk−1

ac ,vk−1

dc ) (11)

where ∆ denotes a vector correction, Aj is the Jacobian of

the j-th component towards its state variables xj , Bj towards

vac and Hj towards vdc.

The above equations are solved in a decomposed way by

reorganizing them as follows. The injector, the AC two-port

and the AC/DC converter state vector corrections ∆xk
j are

obtained from Eqs. (9) and introduced in Eqs. (10) and (11),

to obtain the Schur-complement system of Eq. (12) (see next

page). Then, at each Newton iteration, the latter system is

solved to obtain the voltage corrections ∆vk
ac and ∆vk

dc which

are substituted in the various sets of equations (9). The latter

are then solved to obtain the state corrections ∆xk
j .

This procedure removes the data dependencies between

the various components, allowing their respective sets of

equations to be solved independently. In fact, both the modular

modelling and the Schur-complement formulation allow many

calculations associated with injectors, AC two-ports or AC/DC

converters to be performed independently of each other: DAE

Parallel threads

Parallel threads

(N+1 parallel tasks)

(N parallel tasks)

Figure 3: Decomposed and parallelized simulation algorithm

system discretization, Jacobian and Schur-complement compu-

tation, matrix factorization, linear system solution, etc. Thus,

shared-memory parallel computing techniques are employed

to accelerate the dynamic simulation as shown in Fig. 3.

As is well-known, the D and Gdc matrices have a very

sparse structure, inherited from the sparse nodal admittance

matrix. As explained hereafter, sparsity is very little affected

by the elimination of the ∆xk
j variables. Hence, the Schur-

complement matrix in the left hand side of Eq. (12) is also

very sparse, allowing fast network solutions.

It has to be noted first that Bj and Hj are extremely sparse

matrices. For an injector, since the model involves only two

AC voltage components (vxk, vyk), only two columns of Bj

are non-zero, corresponding to the positions of vxk and vyk
in vac. Similarly, for an AC two-port, Bj includes four non-

zero columns while, for an AC/DC converter, Bj includes two

non-zero columns and Hj one.

From the sparsity patterns of matrices Cj and Bj , it can be

shown that the CjA
−1

j Bj contribution of an injector has only

four non-zero elements which modify four, already non-zero,

elements of D, corresponding to vxk and vyk. Those elements

are shown with squares in Fig. 4.

Similarly, the CjA
−1

j Bj contribution of an AC two-port

consists of sixteen nonzero elements. Eight of them modify

already nonzero entries of a diagonal sub-matrix of D, corre-

sponding to vxk, vyk, vxl and vyl. The other eight, off-diagonal

terms correspond to couplings between these variables.
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Figure 4: Contribution of injectors and AC/DC converters to

the Schur-complement matrix in the left-hand side of Eq. (12)

Finally, the CjA
−1

j Bj , CjA
−1

j Hj , EjA
−1

j Bj and

EjA
−1

j Hj matrices of an AC/DC converter contribute with

nine nonzero elements. They modify four, already nonzero,

elements of D corresponding to vxk, vyk as well as one

element of Gdc corresponding to vdcl. Those five terms are

shown with squares and cross in Fig. 4. The remaining four

contributions correspond to couplings between these variables;

they are shown with disks in Fig. 4.

Obviously, sparse matrix storage is used for D, Gdc, Bj ,

Ej , Cj and Hj whose sparsity patterns are known beforehand

from the network topology. Only the nonzero elements of each

correction term are computed, by solving linear systems with

coefficient matrices Aj .

Last but not least, the Jacobian matrices are updated in-

frequently and kept constant over several Newton iterations or

even discrete time steps. They are updated only if convergence

has not taken place after a number of Newton iterations at the

same discrete time-step.

IV. SIMULATION RESULTS

A. Test system

The system shown in Figs. 5 and 6 was modeled as

described in Section II and simulated with the algorithms of

Section III. It consists of two asynchronous AC systems and

one offshore wind farm, connected through a five-terminal

HVDC grid equipped with five VSCs.

The “East” AC system is based on the so-called Nordic

test system. The starting point was the variant documented in

[11], at its insecure operating point A. With respect to [11],

the system was modified as follows:

• the large, equivalent generator connected to bus 4072 was

removed and replaced by the T1E converter;

• another connection to the DC grid was added at bus 4051,

through the T2E converter. This allows using the MTDC

system as an overlay grid reinforcing the AC system.

≃

=

≃

=

≃

=

≃

=

NORDIC WEST NORDIC EAST

T1W T1E

T2W T2E

≃

=

WF

TWF

See Fig. 6
(op. point
A in [11]

See Fig. 6
(op. point
B in [11])

Figure 5: Overall structure of the test system
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Figure 6: Nordic test system with HVDC grid connections

The modified system is shown in Fig. 6. It includes 73 buses

and 19 synchronous machines modeled in detail with their

regulators. The voltage-dependent loads are represented behind

distribution transformers equipped with Load Tap Changers

(LTCs) reacting with various delays.



The “Nordic West” system is a mirror copy of its East

counterpart, but operating at the secure point B documented

in [11]. It is connected to the DC grid through T1W and T2W.

The Wind Farm is modeled through a simple two-bus AC

grid connected through the TWF converter (see Fig. 5).

The modelling of Section II yields a 5 × 5 matrix Gdc,

while matrices G and B have three nonzero diagonal blocks

corresponding to the East, West and WF grids, respectively.

The five AC/DC converters, of the VSC type, are modeled

in detail, as recommended in [3], [9], [12]. The TWF converter

imposes constant voltage and frequency on the AC side,

thus acting as a slack bus. The other four converters operate

in voltage-droop mode. Thus, when the wind farm output

changes, the current collected by TWF varies and the resulting

power change is shared by T1E, T2E, T1W and T2W.

Last but not least, these four VSCs are provided each with

the frequency support control proposed in [13]. Then the

controller uses the local frequency measurement f as input,

and outputs a correction which is added to the active power set-

point of the VSC, together with the voltage droop term. The

control becomes active when frequency leaves a predefined

deadband. Then, through integral control, the active power P

in the VSC is forced to follow in steady-state a P − f droop

characteristic, similar to the speed droop characteristic of a

conventional speed governor.

B. Scenario and system response

The example reported here involves frequency support be-

tween AC systems, as well as an emergency control with the

HVDC grid stabilizing the AC system in the long term. The

initial event is the outage of generator g17 in the East system.

This disturbance causes the frequency drop shown in Fig. 7.

Without frequency support, the East frequency drops by 350

mHz, while the West frequency remains unaffected. With

frequency support, the controllers present in T1E and T2E

activate the help of the East system by the West one by

actuating a power transfer through the HVDC grid. This is

triggered when frequency drops by more than 200 mHz, which

is sensed by the T2E converter at t = 1.2 s and by T1E at

t = 1.4 s. The benefit of this control is to reduce the frequency

drop in the East system to 300 mHz, while the West system

frequency undergoes a moderate variation, as shown in Fig. 7.

At t = 100 s, the frequency support control is automatically

deactivated when the East frequency has recovered [13].

The system recovers but, in the long term, under the effect of

LTCs attempting to restore distribution voltages and OverExci-

tation Limiters (OELs) bringing generator field currents below

their limits, voltage instability takes place and the system

eventually collapses at t ≃ 120 s, as shown in Fig. 8. This

instability results from the increased power transfer in the

lines between the North and Central areas (see Fig. 6) when

the production lost in the Central area is compensated by

the generators in the North [11]. With the frequency support

control, the power injected by T2E somewhat relieves those

lines and yields a slightly better, but still unstable voltage

evolution, as shown by the dashed curve in Fig. 8.
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Figure 7: Frequency deviations in East and West systems

To relieve those lines, a remedial action consists of trans-

ferring power from North to Central areas through the HVDC

grid. To this purpose, from t = 120 to 140 s, the active power

set-point of T1E is ramped down by 200 MW while that of

T2E is ramped up by the same amount. The resulting voltage

stabilization is easily seen from Fig. 8.

The evolution of VSC active powers and DC voltages

including both remedial actions, are shown in Figs. 9 and 10,

respectively. During the frequency support period, DC voltages

drop due to the power request that draws on the energy stored

in the DC capacitors. This is promptly compensated by the

VSC controls, and the DC voltages settle to values dictated

by the voltage droop settings of T1W and T2W. By properly

tuning the frequency support controller, the overshoot in the

active power response of T1E and T2E, and the DC voltage

depletion are very limited [13]. The power ramping of T1E

and T2E to stabilize voltages in the long term is easily seen

in Fig. 9. The power changes in T1W and T2W are negligible,

and the power transfer from West to East remains unchanged.

V. PROFILING THE MODULAR SOLVER PERFORMANCE

Table I lists the major operations performed during the

whole simulation until the system returns to steady state. The

step size used is 20 ms. It also shows which of them are

performed in parallel and the percentage of the execution

time in the parallel or sequential sections, respectively. The

remaining time is spent on handling the time-step initializa-

tion, bookkeeping, output of computed values, etc.

It can be seen that the time spent to update, factorize

and solve the reduced system (12) is small compared to the

overall simulation time. This is due to the infrequent update

of the Schur-complement matrix (only 18 times throughout

the simulation) and to the sparsity of the matrix which allows

employing fast, sparse linear solvers. The largest percentage

of the simulation time is spent on updating, factorizing and

solving the injector and AC/DC converter systems (9). Fig-

ure 11 shows the total number of solutions performed at every

time step. It can be seen that the number of solutions spikes

after major events (generator tripping, OEL action, activation

of controls, etc.).

However, since these operations can be performed in par-

allel, the simulation time decreases when using a standard

multicore machine. For instance, using a quad-core laptop with

i7-4710MQ CPU @ 2.50GHz and 16GB RAM, the sequential
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Table I: Major operations over the entire simulation

Type of operation Nb Parallel %

Update and factorize the
Schur-complement matrix in (13)

18 No

8

Solve reduced system (13) 18127 No

Evaluate gdc and gac 40948 No

Update and factorize injector
matrices and Schur-complement factors

408361 Yes

60
Update and factorize AC/DC converter
matrices and Schur-complement factors

457 Yes

Solve injector system (10) 1415630 Yes

Solve AC/DC converter system (10) 79972 Yes

Evaluate injector functions fj 4938315 Yes

Evaluate AC/DC Converter RHS fj 284712 Yes

Remaining operations - No 32
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Figure 11: Number of systems (9) relative to injectors and AC/DC
converters solved at each time step

execution takes 5.2 s, while a simulation in parallel using the

four cores takes 3.7 s. That is, the simulation is 1.41 times

faster, even on this small test system, and using a standard

computer. Overall, as 60% of the operations are performed

in parallel, and by ignoring any parallelization overhead and

imbalances, the computation can be up to 2.5 times faster

compared to a sequential run of the same algorithm.

It is noteworthy that even the sequential execution of the

algorithm is very fast as it takes advantage of the modularity

to update and compute the injectors and the AC/DC converters

asynchronously, only when needed.

VI. CONCLUSION

A modular modelling has been proposed allowing to handle

AC and DC network topologies of virtually any complexity. To

this purpose, the system is seen as a combination of AC grids,

DC grids, injectors, AC two-ports and AC/DC converters,

respectively.

This modularity is exploited by the solver, which performs

less operations on components with lower dynamic activity,

and offers parallel processing of the time simulation. This is

made possible by a Schur-complement-based decomposition

allowing to solve the equations of the above mentioned com-

ponents separately, with asynchronous update of Jacobians.

The sparsity of the involved matrices is exploited extensively.

The approach has been illustrated on a test system in

which a multi-terminal DC grid allows frequency support

between asynchronous AC grids, and provides emergency

control against AC voltage instability. In spite of the small

system size, the results confirm the advantages of the proposed

modelling and computational procedure.
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