
Dynamic Simulations of
Combined Transmission and Distribution Systems

using Parallel Processing Techniques
Petros Aristidou Thierry Van Cutsem

Abstract—Simulating a power system with both transmis-
sion and distribution networks modeled in detail is a huge
computational challenge. In this paper, we propose a Schur-
complement-based domain decomposition algorithm to provide
accurate, detailed dynamic simulations of the combined system.
The simulation procedure is accelerated with the use of parallel
programming techniques, taking advantage of the parallelization
opportunities inherent in domain decomposition algorithms. The
proposed algorithm is general, portable and scalable on inex-
pensive, shared-memory, multi-core machines. A large-scale test
system is used for its performance evaluation.

Index Terms—time simulations, domain decomposition meth-
ods, parallel computing, OpenMP

I. INTRODUCTION

The most noticeable developments foreseen in power sys-
tems involve Distribution Networks (DNs). Future DNs are
expected to host a big percentage of the renewable energy
sources. The resulting challenge in dynamic simulation is
to correctly represent DNs and their participation in system
dynamics. This becomes compulsory as DNs are called upon
to actively support the Transmission Network (TN) with an
increasing number of Distributed Generation Units (DGUs)
and loads participating in ancillary services through smart-grid
technologies.

In present-day dynamic security assessment of a large-scale
power system, it is common to represent the bulk generation
and higher voltage (transmission) levels accurately, while the
lower voltage (distribution) levels are equivalenced. On the
other hand, when concentrating on a DN, the TN is often repre-
sented by a Thévenin equivalent. The prime motivation behind
this practice has been the lack of computational resources.
Indeed, fully representing the entire power system network
was historically impossible given the available computing
equipment (memory capacity, processing speed, etc.) [1]. Even
with current computational resources, handling the entire,
detailed model with hundreds of thousands of Differential and
Algebraic Equations (DAE) is extremely challenging [2], [1].

As modern DNs are evolving with power-electronics inter-
faces, DGUs, active loads, and control schemes, more detailed

Petros Aristidou is with the Dept. of Elec. Eng. and Comp. Science,
University of Liège, Liège, Belgium, e-mail: p.aristidou@ieee.org

Thierry Van Cutsem is with the Fund for Scientific Research (FNRS) at
Dept. of Elec. Eng. and Comp. Science, University of Liège, Liège, Belgium,
e-mail: t.vancutsem@ulg.ac.be

Paper submitted to Power Systems Computation Conference, August 18-
22, 2014, Wroclaw, Poland, organized by Power Systems Computation
Conference and Wroclaw University of Technology.

and elaborate equivalent models would be needed to encom-
pass the dynamics of DNs and their impact on global system
dynamics. The three main equivalencing approaches reported
in the literature are modal methods, coherency methods and
measurement or simulation-based methods [3]. Equivalent
models, however, inadvertently suffer from a number of draw-
backs:

• the identity of the replaced system is lost. Faults that hap-
pen inside the DNs themselves cannot be simulated and
individual voltages at internal buses, currents, controllers,
etc. cannot be observed anymore;

• most equivalent models target a specific type of dynam-
ics (short-term, long-term, electromechanical oscillations,
voltage recovery, etc.) and fail when used for another
type. This requires running different types of simulations
with different models;

• in most cases, the use or not of these equivalent models
is decided off-line, when it is still unknown whether the
disturbance will affect or not the DNs of concern.

In this paper, a Schur-complement-based domain decomposi-
tion algorithm for the dynamic simulation of combined trans-
mission and distribution systems is presented. The algorithm
decomposes the combined system on the boundary between
the TN and the DNs. Following, a Schur-complement-based
solution is performed to solve the full, detailed DAE system
in a decomposed manner.

The proposed algorithm accelerates the simulation proce-
dure in two ways. First, the independent calculations of the
sub-networks (such as formulation of non-linear DAE system,
discretization, formulation and solution of linear systems,
check of convergence, etc.) are parallelized, thus providing
computational acceleration. Second, it performs a selective,
infrequent Jacobian update, that is, it exploits the decompo-
sition of the system to selectively update only the Jacobian
matrices of sub-networks converging more slowly.

The proposed algorithm is parallelized with the use of
shared-memory parallel computing techniques through the
OpenMP Application Programming Interface (API) targeting
common, inexpensive multi-core machines. The implementa-
tion is general, with no hand-crafted optimizations particular
to the computer system, operating system, simulated electric
power network or disturbance.

The paper is organized as follows. In Section II the
proposed Schur-complement-based algorithm is presented. In
Section III, the parallel processing techniques considered are

M

M

M

M

M
Injectors

M

Figure 1. Decomposed Power System

summarized. Simulation results are reported in Section IV and
followed by closing remarks in Section V.

II. SCHUR-COMPLEMENT-BASED ALGORITHM

A. Model Decomposition

An important step in developing and applying a domain
decomposition algorithm is the identification of the partition
scheme to be used. In this paper, a topologically-based par-
titioning has been chosen lying on the boundary between
TN and DNs. The decomposition assumes that every DN is
connected to a single TN bus through a transformer [4].

Let the power system sketched in Fig. 1 be decomposed
into the TN and L DNs, along with the power system com-
ponents connected to them. For reasons of simplicity, all the
components connected to the TN or DNs that either produce
or consume power in normal operating conditions (such as
power plants, DGUs, induction motors, other loads, etc.) are
called injectors.

The injectors’ model can be described by a system of non-
linear DAEs [5]:

Γẋ = Φ(x,V)

where V is the vector of rectangular components of bus
voltages (VDi if connected to the i-th DN or VT if connected
to the TN), x is the state vector containing differential and
algebraic variables and Γ is a diagonal matrix with:

(Γ)ℓℓ =

{
0 if the ℓ-th equation is algebraic
1 if the ℓ-th equation is differential.

At the same time, under the standard phasor approximation,
the algebraic equations of each network (TN or DN) take on
the linear form:

0 = DV − I ≜ g(x,V)

where D includes the real and imaginary parts of the bus ad-
mittance matrix and I is the vector of rectangular components
of the bus currents.

Hence, the DAE system describing the TN with its injectors
is:

0 = gT (xT ,VT ,VDt)
ΓT ẋT = ΦT (xT ,VT)

(1)

where VDt is a sub-vector of VD = [VD1 . . . VDL]
T , includ-

ing only the voltage components of the DN buses connected
to the TN through the distribution transformers (see Fig. 1).

Similarly, for the i-th DN with its injectors (i = 1, . . . , L):

0 = gDi(xDi,VDi,V Ti)
ΓDiẋDi = ΦDi(xDi,VDi)

(2)

where VTi is a sub-vector of VT , including only the voltage
components of the TN bus where the i-th DN is connected to
(see Fig. 1).

The proposed decomposition is reflected on the DAE sys-
tems (1) and (2), through the common variables VDt and VTi

(i = 1, ..., L) involved in the equations of the distribution
transformers connecting the DNs to the TN.

B. Discretization and Algebraization

For the purpose of numerical simulation, the injector DAE
systems are discretized using a differentiation formula (such
as Trapezoidal Rule, Backward Differentiation Formula, etc.)
which yields the corresponding non-linear algebraized system:

0 = f(x,V)

Next, these injector equations are linearized and solved
together with the network equations using a Newton-type
method to compute the state vectors VT , xT , VDi and xDi.

Thus, at each Newton iteration, the linear system to be
solved for the TN is:[

JT1 JT2

JT3 JT4

]
︸ ︷︷ ︸

[
∆VT

∆xT

]
−

∑L
i=1

[
CDi△VDi

0

]
=

JT −
[
gT (xT ,VT ,VDt)

fT (xT , VT)

] (3)

where JT is the Jacobian matrix of gT and fT towards the
TN states and CDi towards the voltage of the i-th DN. It is
worth noting that the CDi matrix is very sparse with the only
non-zero columns corresponding to voltage variables of DN
buses directly connected to the TN through the transformers.

Similarly, for the i-th DN, it is:[
JDi1 JDi2

JDi3 JDi4

]
︸ ︷︷ ︸

[
∆VDi

∆xDi

]
−

[
BDi△VT

0

]
=

JDi −
[
gDi(xDi,VDi,VTi)
fDi(xDi,VDi)

] (4)

where JDi is the Jacobian matrix of gDi and fDi towards the
DNi states and BDi towards the TN bus voltage variables. It
can be seen that the BDi matrix is very sparse with the only
non-zero columns corresponding to VTi variables.

C. Reduced System Formulation

The solution of the systems (3)-(4) is performed in a de-
composed manner using a Schur-complement-based method.
For this, the systems (4) are each solved towards ∆VDi and
substituted in (3) to build a reduced system involving only the
TN variables.

To solve for ∆VDi, the system (4) can be rewritten as:

[
JT1 −

∑L
i=1 CDiB̃Di JT2

JT3 JT4

] [
∆VT

∆xT

]
= −

[
gT (xT ,VT ,VDt) +

∑L
i=1 CDig̃Di(xDi,VDi,VTi)

fT (xT , VT)

]
(5)

JDi1∆VDi + JDi2∆xDi = −gDi(xDi,VDi,VTi)

+BDi△VT

JDi3∆VDi + JDi4∆xDi = −fDi(xDi,VDi)

and then solved for ∆VDi as:
∆VDi = + S−1

DiBDi△VT − S−1
Di

[
gDi(xDi,VDi,VTi)

− JDi2J
−1
Di4fDi(xDi,VDi)

]
= + B̃Di△VT − g̃Di(xDi,VDi,VTi)

where:
SDi ≜ JDi1 − JDi2J

−1
Di4JDi3

B̃Di ≜ S−1
DiBDi

g̃Di(xDi,VDi,VTi) ≜ S−1
Di

[
gDi(xDi,VDi,VTi)

−JDi2J
−1
Di4fDi(xDi,VDi)

]
The resulting equations are then substituted in (3) to formulate
the reduced system (5).

It should be noted that the Schur-complement terms
CDiB̃Di each contribute a [2 × 2] matrix centered on the
diagonal of JT1. Thus the original sparsity pattern of the TN
Jacobian matrix JT is preserved. Also, each Right-Hand-Side
(RHS) factor CDig̃Di(xDi,VDi,VTi) affects only the mis-
match values of the TN bus where the i-th DN is connected,
i.e. only two components when Cartesian coordinates are used.

Finally, all the inverse matrix operations appearing in the
above mathematical formulation are actually implemented as
sparse linear system solutions, with appropriate solvers, to
preserve computational efficiency.

D. Solution
The solution proceeds by solving the reduced system (5) to

compute the corrections related to the TN. Then, ∆VT and the
updated VT variables are back substituted in Eqs. (4), which
are solved to compute the DN corrections. After updating the
state vectors, if all the DAE systems (1)-(2) have been solved,
the simulation proceeds to the next time instant, otherwise a
new iteration is performed with the updated variables.

The solution algorithm performs a “dishonest” update of
the Jacobian matrices. That is, the Jacobian matrices JT and
JDi, as well as the Schur-complement terms CDiB̃Di and
the intermediate matrices (e.g. SDi), are kept constant over
several solutions or even time-steps. They are selectively and
independently updated only if the corresponding sub-network
DAE does not converge after a number of iterations within the
same discrete time computation.

The proposed algorithm is numerically equivalent to solv-
ing the original DAE system (1)-(2) using a simultaneous
Very DisHonest Newton (VDHN) method [6]. The Schur-
complement-based algorithm, though, allows to selectively up-
date the Jacobian matrices of DAE sub-systems when needed,
and to exploit the decomposition to parallelize the procedure.

Parallel threads

Parallel threads

(L+1 parallel tasks)

(L parallel tasks)

Figure 2. Proposed Solution Algorithm

III. PARALLEL COMPUTING ASPECTS

Domain decomposition-based algorithms offer paralleliza-
tion opportunities as independent computations can be per-
formed by different computing threads. The proposed algo-
rithm, sketched in Fig. 2, employs parallel computing for the
system formulation, Jacobian update and DN solution.

A. Parallel Algorithm

First, based on the proposed decomposition, no data depen-
dencies exist in the system formulation of each sub-network
(TN or DN). Thus, the independent calculations (injector
discretization and linearization, Jacobian matrix update, mis-
match and reduced system contribution evaluation) are each
performed in parallel for the various sub-networks. This is
shown in the upper shaded block in Fig. 2 where each parallel
task deals with one sub-network. If the L + 1 parallel tasks
are more than the number of available computational threads,
a sharing mechanism takes care of properly assigning the tasks
to the threads.

Next, the reduced system (5) is solved to compute the
updated TN variables and the convergence of the TN system
is checked. Schur-complement-based algorithms suffer from
the sequentiality introduced by the reduced system solution
[7]. However, due to the high sparsity (retained even after the

Schur-complement reduction), the linear nature of the network
equations and the infrequent Jacobian update, this bottleneck
is bounded to 1-2% of the overall computational cost in the
proposed algorithm. Thus, even though this sequentiality could
be tackled with a parallel sparse linear solver, the overhead
due to the new synchronization points would counteract the
benefits. Hence, in this work, a sequential sparse linear solver
has been used.

Finally, after the computed corrections ∆VT are back sub-
stituted in Eqs. (4), the DN systems are decoupled, removing
any data dependencies. The solution of DN sub-systems is
obtained in parallel, using sparse linear solvers, and their
convergence is checked. This is shown in the lower shaded
block in Fig. 2 where each parallel task deals with one DN.

B. Implementation Specifics

Shared-memory, multi-core computers are becoming more
and more popular among low-end and high-end users due
to their availability, variety and performance at low prices.
The OpenMP API was selected for this implementation as it
is supported by most hardware and software vendors and it
allows for portable, user-friendly programming.

OpenMP has the major advantage of being widely adopted,
thus allowing the execution of a parallel application, with-
out changes, on many different computers. It consists of a
set of compiler directives, library routines, and environment
variables that influence run-time behavior. A set of predefined
directives are inserted in Fortran, C or C++ programs to
describe how the work is to be shared among threads that will
execute on different processors or cores and to order accesses
to shared data [8].

One of the most important tasks is to make sure that
parallel threads receive equal amounts of work. Imbalanced
load sharing leads to delays, as some threads are still working
while others have finished and remain idle. OpenMP includes
three easy to employ mechanisms for achieving good load
balance among the working threads [8].

First, with the static strategy, the scheduling is predefined
and one or more parallel tasks are assigned to each thread
rotationally prior to the parallel execution. This decreases
the overhead needed for scheduling but can introduce load
imbalance if the work inside each task is not the same.
Second, with the dynamic strategy, the scheduling is updated
during the execution. This introduces a high overhead cost
for managing the threads but provides the best possible load
balancing. Finally, with the guided strategy, the scheduling
is again dynamic but the number of tasks assigned to each
thread are progressively reduced in size. This way, scheduling
overheads are reduced at the beginning of the loop and good
load balancing is achieved at the end.

In the proposed algorithm, high imbalance between parallel
tasks can arise from the different sizes of the various sub-
networks (TN or DNs). That is, if the sub-networks in the
system have different number of buses and injectors, hence
different size of DAE systems, the threads computing them
will have different work loads. In such situations, the dynamic

strategy is preferred for better load balancing. Spatial locality
can be addressed by defining a minimum number of successive
tasks to be assigned to each thread (chunk). Temporal locality,
on the other hand, cannot be easily addressed with this strategy
because the tasks treated by each thread, and thus the data
accessed, are decided at run-time and can change from one
parallel segment of the code to the next [8].

IV. RESULTS

In this section we present the results of the Schur-
complement-based algorithm implemented in the academic
simulation software RAMSES, developed at the University of
Liège. The software is written in modern Fortran 2003 with
the use of OpenMP directives for the parallelization as detailed
in Section III. The simulations are performed on a 48-core
AMD Opteron Interlagos1 desktop computer running Debian
Linux 6. The environment variable OMP_NUM_THREADS
was used to vary the number of computational threads avail-
able to the simulation software at each execution.

A. Performance Indices

Many different indices exist for assessing the performance
of a parallel algorithm A. The two indices used in this study,
scalability and speedup, are defined as [9]:

Scalability(N) =
Wall time (A) (1 core)

Wall time (A) (N cores)
(6)

Speedup(N) =
Wall time (V DHN) (1 core)

Wall time (A) (N cores)
(7)

where N is the number of available computational threads.
The first index shows how the parallel implementation

scales when the number of available processors increases.
That is, the tested parallel algorithm is benchmarked against
a sequential execution of the same algorithm.

The scalability index is directly related to Amdahl’s law [8]
and using the latter, can be rewritten as:

Scalability(N) =
S + P

S + P
N +OHC(N)

(8)

where S is the sequentially computed portion, P the parallel
portion and OHC the OverHead Cost of making the code run
in parallel (creating and managing threads, communication,
memory latency, etc.). The values of S and P can be estimated
with the use of a profiler monitoring the sequential execution
of the algorithm. Equations (6) and (8) can be used to assess
the algorithm’s parallel efficiency, defined as the net incre-
mental acceleration gained with each additional computational
thread.

Usually, parallel algorithms are designed and optimized to
be executed in parallel and exhibit low performance in sequen-
tial execution. Thus, even though scalability is an important
index, it is not enough to assess the absolute performance
of a parallel algorithm. Hence, the speedup index (7) shows

1CPU 6238 @ 2.60GHz, 16KB private L1, 2048KB shared per two cores
L2 and 6144KB shared per six cores L3 cache, 128GB RAM

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13

g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure 3. Expanded Nordic System

how much faster is the proposed parallel algorithm compared
to a fast, optimized for sequential execution, algorithm. In
this study, the sequential VDHN algorithm was used as a
reference. In this algorithm, the combined DAE system (1)-(2)
is solved as a whole using a Newton method with infrequent
Jacobian update. The full DAE system is discretized and
linearized, the combined Jacobian matrix is formulated and
the linear system solved to compute all variable corrections
simultaneously. The Jacobian matrix is updated only if the
solution has not converged after three iterations. This is a
well-known method used by many commercial and academic
software and considered to be one of the fastest sequential
algorithms [9].

It is noteworthy that both algorithms were implemented in
the same software. Thus, they solve exactly the same model
equations to the same accuracy, using the same algebraization
method (namely the second-order backward differentiation for-
mula), way of handling the discrete events [10], mathematical
libraries (i.e. sparse linear solver), etc. Keeping the aforemen-
tioned parameters the same for both algorithms permits for the
better evaluation of the proposed algorithm’s performance.

B. Test System Model

This section reports on results obtained with a large-scale
combined transmission and distribution network model based

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 20 40 60 80 100 120 140 160 180

t (s)

(pu)

VDHN
Parallel Algorithm

Figure 4. Case 1: Voltage on TN bus 1041

on the Nordic system, documented in [11]. The original
TN model is extended with 146 realistic DNs replacing its
aggregated distribution loads as shown in Fig. 3. The model
and data of each DN were taken from [12] and scaled to match
the original TN loads. Multiple DNs were used to match the
original load powers, taking into account the nominal power
of the TN-DN transformers.

Each one of the 146 DNs includes 100 buses, 108 branches,
one distribution voltage regulator equipped with Load Tap
Changing (LTC) device, three type-1, three type-2 and two
type-3 Wind Turbines (WTs) [13], 12 impedance loads and
133 dynamically modeled loads, such as small induction
machines and self-restoring exponential loads. The transformer
connecting each DN to the TN is also equipped with an LTC
controlling the distribution side voltage.

To further avoid identical DNs and artificial synchroniza-
tion, the delays on transformer tap changes were randomized
around their original values and the WTs were randomly
initialized to produce 80-100% of their nominal power.

In total, the combined transmission and distribution sys-
tem includes 14653 buses, 15994 branches, 20 synchronous
machines, 293 LTC equipped transformers, 1168 WTs, 1752
impedance loads and 19419 dynamically modeled loads. The
resulting DAE system has 143462 differential-algebraic states.

C. Case 1

The disturbance considered in this scenario is the loss
of approximately 115 MW of wind generation due to the
disconnection of 30 type-1, 30 type-2 and 20 type-3 WTs
located inside ten DNs, all connected to TN bus 1041 in the
CENTRAL area (see Fig. 3). The WTs, grouped per DN, are
successively disconnected over a period of 10 s and the system
is simulated for 180 s with a time-step size of one cycle at the
nominal frequency (50 Hz). This event might result from high
winds in the area, causing WTs to trip to avoid damage. Such
disturbances, with events happening inside the DNs, are very
difficult to simulate when detailed DN models are not used.

Figure 4 shows the voltage at the TN bus 1041, where the
affected DNs are attached. The successive disconnection of
the WTs inside the DNs is reflected on the voltage evolution
during the first 10 s. That is, as the WTs within each DN

-80

-75

-70

-65

-60

-55

 0 20 40 60 80 100 120 140 160 180

t (s)

(MW)

DNA
DND
DNF

Figure 5. Case 1: Active power transfer over TN-DN transformers
(negative sign signifies the DN is importing active power from the TN)

disconnect, the corresponding DN imports the lost power
from the TN. This gradually increasing TN-DN power transfer
leads to depressed TN voltages. In the long term, the system
evolves under the effect of LTCs acting to restore distribution
voltages, thus further depressing TN voltages. The simulated
evolution is shown with both VDHN and the proposed parallel
algorithm. As expected, the output trajectories are indistin-
guishable as the two algorithms solve the same DAEs with
the same accuracy.

Figure 5 shows the active power transfer over the TN-
DN transformers of three of the DNs. In particular, DNA

is the first, DND is the fourth and DNF the sixth whose
WTs disconnect. When the WTs of a DN disconnect, the
imported power is immediately increased to compensate for
the lost local generation. The already mentioned TN voltage
drop impacts the neighboring DNs and, due to the voltage
sensitivity of loads, the imported power decreases. Hence,
immediately after the disturbance, only a fraction of the lost
WT power is imported from the TN. In the long-term, as the
LTC actions restore the DN voltages, the load consumption
is also restored and the whole lost active power deficit is
compensated by importing from the TN.

This interaction mechanism shows the necessity for detailed
DN representation in dynamic simulations. The sequence of
discrete events, like WT disconnections, LTC actions, etc., the
behavior of DN components and controls, and the interactions
of DNs with the TN or between them, dictate the resulting
system evolution.

Figure 6 shows that algorithm A offers a speedup of up to
5.2 times when compared to the VDHN algorithm. Initially, the
parallel algorithm executed on a single core performs around
40% slower than the, optimized for sequential execution,
VDHN. This delay is due to the extra computational costs of
the domain decomposition-based scheme (e.g. partition-related
book-keeping, intermediate Schur-complement calculations,
etc.). As regards the scalability of the algorithm, Fig. 7 shows
that it executes up to nine times faster in parallel compared to
its own sequential execution.

From Figs. 6 and 7, it can be seen that the parallel
algorithm is more efficient in the range of up to 24 cores,

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
 0

 1

 2

 3

 4

 5

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=180s

VDHN=635s

Wall time
Speedup

Figure 6. Case 1: Speedup

while after that the benefit becomes marginal. This can be
explained from Eq. (8). When increasing the number of
parallel threads by one, the execution time gained can be
computed as P

N − P
N+1 , assuming that the sequential and

parallel portions remain unchanged. Thus, when N increases,
it is easy to see that the incremental gain decreases. At the
same time, the incremental OHC of creating and managing
a new thread (OHC(N + 1)−OHC(N)), calculated for the
specific computer platform, is almost constant. Hence, as the
number of computational threads increases, the net incremental
gain (difference between incremental gain and OHC) declines
and can reach zero or even negative values.

D. Case 2

The disturbance considered in this scenario is a five cycle
(0.1 s) short circuit near the TN bus 4032 cleared by the
opening line 4032-4042. The system is then simulated over
240 s with one cycle time-step size. After the electromechan-
ical oscillations have died out, the system evolves in the long-
term under the effect of LTCs acting to restore distribution
voltages and overexcitation limiters on the generators. This is
a severe disturbance that affects all the TN and DNs.

Figure 8 shows the active power output of a type-3 WT
located in one of the DNs of the CENTRAL area. It is shown
with both VDHN and the proposed parallel algorithm. As
expected, the two are indistinguishable.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
c
a

la
b

ili
ty

of cores

Case 1
Case 2

Figure 7. Case 1 and 2: Scalability

 1.42

 1.43

 1.44

 1.45

 1.46

 1.47

 1.48

 0 40 80 120 160 200 240

t (s)

(MW)

VDHN
Parallel Algorithm

Figure 8. Case 2: DN type-3 WT active power output

Figure 7 shows the scalability of the proposed algorithm
reaching 14.5 times, while Fig. 9 shows that the parallel
algorithm achieves a speedup of eight times compared to the
VDHN, simulating the disturbance in around 130 s.

It can be seen that both scalability and speedup are higher in
Case 2 compared to Case 1. Moreover, the algorithm exhibits
efficient scaling up to 32 cores, compared to the 24 cores of
the previous case. These differences can be explained by the
larger amount of computational work available in the parallel
portion of this simulation. Indeed, due to the severe nature
of this scenario, the system exhibits higher dynamic activity.
Thus, more frequent Jacobian matrix updates and more DN
system solutions are required, leading to an increased overall
computation time (S + P). At the same time, as most of the
aforementioned computations are in the parallel portion, the
ratio P

S+P also increases. Hence, with a bigger P value, the
higher scalability and speedup achieved can be explained from
Eq. (8), considering that the incremental OHC, that depends
on the computer platform, is the same as before.

In general, the proposed algorithm is more efficient and
achieves higher speedup when simulations with high dynamic
activity are considered.

V. CONCLUSION

In the future, distributed protection and control schemes,
DGUs providing ancillary services and active demand re-
sponse will make the contribution of DNs to the system
dynamics more significant and their detailed simulation more
vital. Thus, the need for simulating larger power system
models, including DNs, will increase the computational burden
of dynamic simulations.

In this paper a parallel Schur-complement-based algorithm
for dynamic simulation of combined transmission and dis-
tribution systems has been presented. The algorithm yields
acceleration of the simulation procedure in two ways. On
the one hand, the procedure is accelerated numerically, by
performing selective and infrequent Jacobian updates of the
decomposed sub-systems. On the other hand, it is accelerated
computationally, by exploiting the parallelization opportunities
inherent to domain decomposition algorithms.

The proposed algorithm is accurate, as the original system
of equations is solved with the same accuracy. It has the

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=240s

VDHN=1053s

Wall time
Speedup

Figure 9. Case 2: Speedup

ability to simulate a wide variety of disturbances. It exhibits
high numerical convergence rate, provided by Newton-type
algorithms.

Along with the proposed algorithm, an implementation
based on the shared-memory parallel programming model has
been presented. The implementation is portable, as it can be
executed on any platform supporting the OpenMP API. It
can handle general power systems, as no hand-crafted, system
specific, optimizations were applied. Finally, it exhibits good
parallel performance on inexpensive, shared-memory, multi-
core computers.

REFERENCES

[1] D. Koester, S. Ranka, and G. Fox, “Power systems transient stability-
A grand computing challenge,” Northeast Parallel Architectures Center,
Syracuse, NY, Tech. Rep. SCCS, vol. 549, 1992.

[2] R. Green, L. Wang, and M. Alam, “High performance computing for
electric power systems: Applications and trends,” in Proc. of IEEE PES
General Meeting, 2011.

[3] U. D. Annakkage, N. K. C. Nair, Y. Liang, A. M. Gole, V. Dinavahi,
B. Gustavsen, T. Noda, H. Ghasemi, A. Monti, M. Matar, R. Iravani, and
J. A. Martinez, “Dynamic System Equivalents: A Survey of Available
Techniques,” IEEE Transactions on Power Delivery, vol. 27, pp. 411–
420, Jan. 2012.

[4] T. Short, Electric Power Distribution Handbook. Electric power engi-
neering series, Taylor & Francis, 2003.

[5] P. Kundur, Power system stability and control. McGraw-hill New York,
1994.

[6] B. Stott, “Power system dynamic response calculations,” Proceedings of
the IEEE, vol. 67, no. 2, pp. 219–241, 1979.

[7] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial and Applied Mathematics, 2nd ed., 2003.

[8] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[9] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power
system stability analysis,” IEEE Transactions on Power Systems, vol. 8,
no. 1, pp. 9–15, 1993.

[10] D. Fabozzi, A. Chieh, P. Panciatici, and T. Van Cutsem, “On simplified
handling of state events in time-domain simulation,” in Proc. of the 17th
Power Systems Computation Conference, 2011.

[11] T. Van Cutsem, “Description, modeling and simulation results of a test
system for voltage stability analysis,” Internal Report, University of
Liège, Sept. 2013. http://hdl.handle.net/2268/141234.

[12] A. Ishchenko, Dynamics and stability of distribution networks with
dispersed generation. PhD thesis, Dept. Electrical. Eng., Univ. TU/
E, the Netherlands, 2008.

[13] A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, and J. Sanchez-Gasca,
“Description and technical specifications for generic WTG models: A
status report,” in IEEE PES Power Systems Conference and Exposition,
March 2011.

