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Abstract—Co-simulation opens new opportunities to combine
mature ElectroMagnetic Transients (EMT) and Phasor-Mode
(PM) solvers, and take advantage of their respective high ac-
curacy and execution speed. In this paper, a relaxation approach
is presented, iterating between an EMT and a PM solver. This
entails interpolating over time the phasors of the PM simula-
tion, extracting phasors from the time evolutions of the EMT
simulation, and representing each sub-system by a proper multi-
port equivalent when simulating the other sub-system. Various
equivalents are reviewed and compared in terms of convergence
of the PM-EMT iterations. The paper also considers the update
with frequency of the Thévenin impedances involved in the EMT
simulation, the possibility to compute the EMT solution only
once per time step, and the acceleration of convergence through
a prediction over time of the boundary variables. Results are
presented on a 74-bus, 23-machine test system, split into one
EMT and one PM sub-system with several interface buses.

Index Terms—co-simulation, phasor mode simulation, electro-
magnetic transients, hybrid simulation, hardware-in-the-loop

I. INTRODUCTION

T
HE term co-simulation refers to the combination of (at

least) two different tools for performing a single multi-

physics or multi-model simulation. This paper deals specif-

ically with the co-simulation of EMT and phasor models.

The main motivation behind this work is to combine the

accuracy of EMT with the computational efficiency of PM

simulations. While mature software exist for both models,

further investigations and developments are needed for their

efficient and accurate coupling.

A number of simulation and/or system reduction techniques

have been proposed in the literature. EMT models [1] are the

most accurate. They can represent network components at var-

ious levels of detail. Moreover, there are a number of mature

EMT simulation software (e.g. EMTP-RV, PSCAD, Hypersim,

etc.). Nevertheless, they are also the most computationally

demanding, compared to simplified models. Dynamic Phasor

models (e.g. [2]) can be as accurate as EMT ones and, at the

same time, faster to simulate, when the waveforms are quasi-

sinusoidal. However, to the authors’ knowledge, there exists

no industry-grade tool relying on this approach. Reduced,

equivalent models of a large portion of the system can be

used, for instance in the form of a Low Frequency Equivalent,
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while performing detailed EMT simulations of the sub-system

of greater interest [3]. This approach is faster than full EMT

simulation, but with some decrease of accuracy. Even more

simplified, the PM solvers, used in stability studies, are usually

based on the positive-sequence phasors and assume negligible

(or compensated) negative- and zero-sequence components [4].

While this is the fastest category of solvers, EMT phenomena

are not considered. The approach reported in this paper

combines PM and EMT solvers.

The idea of combining PM and EMT models can be traced

back to [5], involving studies of High Voltage Direct Current

(HVDC) current-source converters. Still today, PM-EMT hy-

brid simulations are mainly applied to HVDC systems (e.g.

[6], [7]). A comprehensive literature review can be found in

[8]. A drawback of many proposed methods is the relatively

small size of the EMT sub-system considered, mainly for

performance reasons. However, with the computational power

available nowadays, larger EMT models can be simulated

efficiently. Thus, a larger neighborhood of the device being

investigated can be included in the detailed EMT model.

Similarly, when a contingency is simulated in the EMT sub-

system, a larger number of the impacted components can be

represented in detail. In this way, when the boundary between

the PM and EMT sub-systems is located further away from the

disturbance, the voltages and currents at the interface are closer

to the balanced, quasi-sinusoidal evolution assumed in PM

simulations. This makes the extraction of boundary voltages

and currents from the response of the EMT sub-system easier.

On the contrary, if the PM-EMT boundary is too close to the

disturbance location, a wide-band multi-port system equivalent

has to be used, as discussed in [6] and its references, to

represent the PM sub-system in the EMT simulation. Enlarging

the EMT sub-system generally means increasing the number

of interface buses between PM and EMT sub-systems. One

issue tackled in this paper is the proper choice and update

of the multi-port equivalent attached to those interface buses.

This is an extension of the authors’ previous work reported in

[9], [10].

The paper is organized as follows. Section II reviews the

main PM-EMT boundary conditions proposed in the litera-

ture. Section III details the relaxation process including time

interpolation and phasor extraction. Simulation results are

presented in Section IV, before concluding in Section V.

II. A SHORT REVIEW OF BOUNDARY CONDITIONS

Boundary conditions deal with the equivalent model used

to replace one sub-system when simulating the other. Figure 1



2

Figure 1. Boundary conditions. Arrows indicate information transfers from
one solver to the other at successive iterations of the relaxation process

summarizes the main approaches found in the literature.

In the simplest scheme, shown in Fig. 1.a, when simulating

one sub-system, the other is replaced by an ideal voltage or

current source whose value is given by the previous iteration

of the relaxation scheme [11]. Another approach, used for

instance in [6] and shown in Fig. 1.b, consists of a current

source to represent the EMT sub-system, while a Frequency

Dependent Network Equivalent (FDNE) admittance in parallel

with an ideal current source is used to replace the PM sub-

system. This representation is more accurate and valid over a

wider frequency range, thus allowing to move the PM-EMT

boundary closer to the disturbance location without degrading

accuracy [8]. A variant of the latter is shown in Fig. 1.c and

used in [12], where the EMT sub-system is represented by an

impedance updated at each relaxation iteration.

The last approach, and the one used in this work, makes use

of a Norton and a Thévenin equivalent, as shown in Fig. 1.d.

It must be noted that the choice between Norton and Thévenin

is arbitrary, as for each one there is an equivalent model in

the other representation. This approach can be already found

in [13], while further investigations have been reported in [7],

[9], [10]. Nevertheless, the above references report on results

with a single boundary bus, and on small test systems.

The main issue with the current source equivalent (left-hand

side in Figs. 1.a and 1.b) is that it does not take into account

the variations of current with voltage at the boundary bus.

In other words, the sensitivity of the replaced sub-system to

voltage is neglected and the co-simulation process needs to

wait for the next iteration to get an updated boundary current

value. The voltage source representation (right-hand side in

Fig. 1.a) has a similar limitation concerning the sensitivity to

current variations.

The equivalent impedance representation, shown on the

left-hand side in Fig. 1.c, leads to a dynamically updated,

diagonal impedance matrix Z
k = diag

(

V̄1

k

Ī1
k , . . . ,

V̄n
k

Īn
k

)

where

Figure 2. Protocol of computation combining PM and EMT solvers

V̄1
k
, . . . , V̄n

k
are the voltage phasors at the n boundary buses,

and Ī1
k
, . . . , Īn

k
the corresponding currents, all at the k-

th iteration of the relaxation process. Clearly, the coupling

between boundary buses is neglected.

With the Thévenin (or Norton) equivalents, shown in

Figs. 1.b, c and d, the coupling between boundary buses is

taken into account through an n × n Thévenin impedance

matrix Zpm. This equivalent makes up a first-order (linear)

approximation of the variation of voltages with currents at

the boundary buses of the replaced sub-system. With proper

updates of Zpm, this approximation shows good accuracy and

fast convergence, as confirmed by the results in Section IV.

Furthermore, Zpm does not need to be updated frequently, but

only when a significant change (such as fault inception and

clearing) takes place in the system.

III. THE PROPOSED CO-SIMULATION ALGORITHM

A. Relaxation process

The overall protocol for the interaction between the PM

and the EMT solvers is sketched in Fig. 2. PM simulation is

performed with a “large” time-step size H , and EMT with a

“small” time-step size h. The focus is on iterations performed

when passing from time t to time t+H , i.e. over one step of

the PM simulation. Based on some prediction of the interface

voltages and currents (step 0), the PM sub-system is computed

first (step 1). It is solved once again (step 5) after having

simulated the EMT sub-system (step 3). Steps 2 and 4 consist

in updating the boundary conditions for resp. the EMT and the

PM sub-systems. Steps 2 to 5 are repeated until convergence

or for a predefined number of iterations.

Figure 3 shows the main computation steps, the information

exchanged by both solvers and the update of the equivalents.

The PM simulation is performed first, relying on the

last updated equivalent of the EMT sub-system (or on an

equivalent derived from the predicted values, as described in

Section III-E). It yields the intermediate values of the boundary

bus voltages and currents, V̄ k+ 1

2 and Ī
k+ 1

2 , which are passed

to the EMT simulation.

First, they are used to compute the vector of Thévenin

voltage phasors:

Ēpm = V̄
k+ 1

2 −ZpmĪ
k+ 1

2 , (1)

with:

Zpm = Rpm + jωnomLpm , (2)

where Zpm is an estimate of the Thévenin impedance matrix

of the PM sub-system, as seen from its boundary buses, Rpm
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Figure 3. Main steps and information exchange relaxation process for co-
simulation [10]

(resp. Lpm) is the corresponding resistance (resp. inductance)

matrix, computed prior to the simulation, and ωnom is the

nominal angular frequency.

Next, the components of Ēpm are interpolated as described

in Section III-C, to obtain the vector e of voltages at each

discrete time t + mh (m = 0, . . . , ρ). Finally, the Thévenin

equivalent is replaced by the differential equations of the

corresponding RL circuit:

v = e+R
abc
pm i+L

abc
pm

d

dt
i , (3)

where v, e and i are vectors of dimension 3n relative to the

three phases of the n boundary buses, and R
abc
pm (resp. Labc

pm)

is the 3n×3n three-phase resistance (resp. inductance) matrix

derived from Zpm (and, hence, accounting for the coupling

between boundary buses).

At the end of the EMT simulation, after the phasors have

been extracted, the updated boundary voltages and currents

V̄
k+1 and Ī

k+1 are made available. They are in turn used

to update the Norton equivalent used by the PM simulation.

That equivalent is represented with standard models of current

injectors, impedance loads, and branches with pi-equivalents.

Convergence is checked in the PM solver at the level of

network equations. Iterations are stopped when the current

mismatches at all buses (including the boundary buses) fall be-

low some tolerance. Once convergence has been achieved, the

simulation proceeds with the next time interval [t+H t+2H].
Otherwise, an additional relaxation iteration is performed.

B. Updating equivalent impedances Zpm with frequency

PM simulations are usually performed with constant net-

work and machine impedances, computed at nominal fre-

quency. In the EMT simulation, on the other hand, no such

approximation is made, since current and voltage waveforms

are computed by solving differential equations of the type (3).

Hence, using Zpm at nominal frequency (see Eq. (2)) to

compute Ēpm and there from obtaining (by the interpolation

Figure 4. Interpolation of Thévenin voltage sources

detailed in Section III-C) the voltages e used in Eq. (3)

introduces some inconsistency. A more accurate approach, in

case of large frequency deviations, consists in updating Zpm

with frequency before computing the Thévenin voltage Ēpm.

Because frequency differs from one boundary bus to an-

other, the following approximation is considered:

Zpm ≃ Rpm + j Lpm diag (ω1, . . . , ωn) . (4)

Thus, the i-th column of Lpm is multiplied by the frequency

ωi of the current at the i-th boundary bus (i = 1, . . . , n). The

latter frequency is evaluated numerically at discrete time t+H
as:

ωi(t+H) ≃ ωnom +
ψi(t+H)− ψi(t)

H
, (5)

where ψi(t) is the phase angle of the extracted current at the

previous discrete time t and ψi(t+H) the corresponding phase

angle obtained from the last EMT simulation at the current

time t+H .

Zpm is updated at every co-simulation iteration, and used

to compute Ēpm according to Eq. (1).

C. Time interpolation

Time interpolation is used to obtain from the phasors pro-

vided by PM simulation the corresponding waveforms used by

EMT simulation. The phasors of concern are the n Thévenin

voltages. A linear interpolation of respectively the magnitude

and phase angle of each phasor Ēpm is considered, as shown

in Fig. 4. H is assumed to be a multiple of h, i.e. H = ρh
where ρ is an integer. Note that this choice is for simplicity of

presentation, but is not required by the procedure. Thus, at the

discrete time instant t+mh (m = 0, . . . , ρ), the interpolated

Thévenin voltage magnitude is given by:

E(t+mh) = ||Ēpm(t)||+m

ρ

(

||Ēpm(t+H)|| − ||Ēpm(t)||
)

,

(6)

where || || denotes the magnitude. Similarly, the interpolated

phase angle is given by:

φ(t+mh) = ∠Ēpm(t)+
m

ρ

(

∠Ēpm(t+H)− ∠Ēpm(t)
)

(7)

where ∠ denotes the phase angle. Considering phase a, for

instance, the discretized Thévenin voltage is obtained as (m =
0, . . . , ρ):

ea(t+mh) =
√
2E(t+mh) cos [ωnom (t+mh) + φ(t+mh)] .

(8)
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D. Phasor extraction

Phasor extraction consists of obtaining from the voltage and

current waveforms at the boundary buses, provided by EMT

simulation and denoted by v and i in Fig. 3, the positive-

sequence voltage and current phasors, denoted by V̄
k+1 and

Ī
k+1 in the same figure. Two methods are used to this purpose.

The first one consists in fitting to each waveform separately

a shifted quasi-cosine evolution. The second method uses a

projection of the three phase variables on a rotating reference

frame. The first is the main method used, but it is replaced by

the second over some time intervals, as explained hereafter.

For simplicity, the presentation deals with currents, but

voltages are treated similarly.

Method 1: Least-square curve fitting: This method consists

of fitting to the points obtained by EMT simulation the com-

bination of a variable-amplitude variable-phase cosine with an

exponentially decaying component. At time t+H , the fitting is

performed in the least-square sense using the points collected

over an interval [t+H − Tx t+H].
The function to fit is taken as:

√
2

[

A0 +
(A1 −A0)k

kmax

]

cos

[

kTx ωnom

kmax
+ φ0 +

(φ1 − φ0)k

kmax

]

+ E exp

(

− kTx
kmaxτ

)

, (9)

where k = 0, . . . , kmax is the discrete time (kmax = fsTx,

where fs is the sampling frequency). The six parameters to

identify are:

• A0, φ0: effective value and phase angle at time t+H−Tx
• A1, φ1: effective value and phase angle at time t+H
• E, τ : amplitude of the exponential component at time

t+H − Tx, and the corresponding time constant.

The terms of higher frequency present in the EMT simulation

outputs are filtered out as “measurement noise” by the least-

square fitting. Owing to the presence of the cosine component

in (9), Tx should be at least equal to one period at fundamental

frequency ωnom/2π.

The two parameters of interest for phasor extraction are A1

and φ1, the amplitude and phase angle of the quasi-cosine

component at time t + H (i.e. for k = kmax). Note that, by

considering the value of (9) at the end of the EMT simulation

interval, the procedure does not introduce any time delay.

Each phase current is processed separately, yielding possibly

unbalanced phasors, with effective values A1a, A1b and A1c

and phase angles φ1a, φ1b and φ1c, all relative to time t+H .

The positive, negative and zero-sequence components are

straightforwardly obtained from:




Ī+a
Ī−a
Īoa



 =
1

3





1 ej
2π

3 e−j 2π

3

1 e−j 2π

3 ej
2π

3

1 1 1









A1ae
jφ1a

A1be
jφ1b

A1ce
jφ1c



 .

The least-square fitting is applied to the last kmax + 1
samples in a time window of width Tx. However, if a large

disturbance, such as fault inception or clearing, takes place

in this time window, it may not be appropriate to consider

the same values of (A0, A1, φ0, φ1, E, τ) before and after the

disturbance.
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Figure 5. Extraction problem around the time of a major disturbance

By way of illustration, Fig. 5 shows the phase currents

before and after clearing a three-phase fault by opening the

individual phase breakers at three successive times, shown

with dash-dotted lines. Assuming that phasor extraction is

needed at t = 1.12 s, with Tx = 20 ms, the time window of

fitting is shown in shaded grey. The three clearing times fall in

that window. A proper handling of the wave distortions would

require using a different function (9) after fault clearing. This,

however, would lead to an insufficient number of samples.

Note that this problem occurs with other extraction methods,

such as Fourier analysis, although it has not been documented

in the literature, to the authors’ knowledge. It will be less

critical if the boundary buses are far enough from the fault

location, which is another reason to somewhat extend the EMT

sub-system.

The above issue is dealt with by resorting to another

extraction technique while the interval [t+H − Tx t+H]
includes a discontinuity. The technique replacing temporarily

the least-square fitting could be the one in Ref. [6] (involving

the instantaneous power). Instead, the results reported in this

paper have been obtained with the method detailed hereafter.

Method 2: Projection on a rotating reference and filtering:

The amplitude and phase angle of the positive-sequence com-

ponent can be extracted from the three-phase, time-varying

current waveforms by projecting them on (x, y) reference axes

[11]. These are the axes used in the PM simulation to project

the rotating vectors associated with quasi-sinusoidal variables,

and obtain their corresponding rectangular components. This

is illustrated in Fig. 6 where Ix and Iy are the components of

phasor Īa, all three varying with time.

The reference axes are taken as rotating at the angular speed

ωnom in the PM simulation. Thus, at time t, the angle between

the x axis and a fixed reference is (see Fig. 6):

θ = ωnomt, (10)

assuming that the x and the reference axes coincide at t = 0.
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Figure 6. Reference axes involved in the phasor extraction

The projection is of the Park type [14], and inspired of phase

locked loop systems [15]. The vector of projected currents

ixy is obtained from the vector of three-phase instantaneous

currents iabc using the linear transformation:

ixy = T iabc , (11)

where:

T =

√
2

3

[

cos (θ) cos
(

θ − 2π
3

)

cos
(

θ − 4π
3

)

− sin (θ) − sin
(

θ − 2π
3

)

− sin
(

θ − 4π
3

)

]

.

(12)

If the three-phase currents were balanced at fundamental

frequency only, i.e. if

iabc =





ia
ib
ic



 =





√
2Ia cos (ωnomt+ ψa)√

2Ia cos
(

ωnomt+ ψa − 2π
3

)

√
2Ia cos

(

ωnomt+ ψa − 4π
3

)



 , (13)

then, it is easily shown that:

ixy =

[

Ix
Iy

]

=

[

Ia cosψa

Ia sinψa

]

, (14)

which shows that the components of ixy are indeed the

projections on x and y of a vector rotating at angular speed

ωnom, having amplitude Ia and a phase angle ψa with respect

to the x axis, as shown in Fig. 6. The current phasor to consider

in PM simulation is thus obtained from:

Ia =
√

I2x + I2y , ψa = arctan
Iy
Ix

. (15)

Note that Eqs. (11)-(12) are applied to the currents iabc at the

last time t+H of the interval [t t+H] currently simulated by

the EMT solver. Hence, this phasor extraction technique does

not either introduce a delay associated with the processing of

the waveforms at times prior to t+H .

However, Eq. (14) is valid only for balanced, three-phase

currents at fundamental frequency. The effects of a fault

located in the EMT sub-system are felt at the boundary

between PM and EMT sub-systems. Thus, the boundary

current waveforms are affected by “noise” stemming from

aperiodic, negative- and zero-sequence components, as well

as harmonics. Filtering is necessary to eliminate their effects.

Aperiodic (resp. negative-sequence) components present in

iabc will show their effects on ixy as sinusoidal components

at nominal (resp. double nominal) frequency. Therefore, the

filter must satisfy the following requirements:

• preserve the amplitude of components with frequencies

between 0 and 5 Hz. This covers the frequency spectrum

of concern in PM simulation;

• filter out the fundamental-frequency, double-

fundamental-frequency, and higher frequency

components;

• do not affect the phase with respect to the initial signal in

the [0 5] Hz frequency range, to avoid introducing delay

between the EMT and PM simulations.

To meet these objectives, a low-pass numerical filter pro-

cesses the sequence of (Ix, Iy) values obtained by applying

the transformation (11)-(12) to the values of iabc computed by

the EMT simulation. Thus, the sampling period of the filter is

h. Re-sampling is necessary in case the discrete times of the

EMT simulation are not equidistant, which is the case if the

time-step size was reduced during the EMT simulation. The

time window processed by the filter should not be too narrow,

for accuracy reasons [16]. In practice it is set to one period at

fundamental frequency.

The Butterworth low-pass filter [16] satisfies the above

requirements. For a continuous-time filter of K-th order, the

magnitude-squared transfer function takes on the form:

|H̄c(jω)|2 =
1

1 + (ω/ωc)
2K

, (16)

where ωc is the cutoff frequency. This filter is characterized

by a magnitude response maximally flat in the pass-band. This

means that the first 2K − 1 derivatives of function (16) are

zero at frequency ω = 0 [16].

The filter is applied twice, once with increasing and once

with decreasing times. Doing so almost cancels the phase shift

introduced by the filter in the pass-band. In this work, K has

been taken equal to two. However, applying the filter twice

yields globally a fourth-order filter, which is expected to give

sufficient cut-off band attenuation for most systems.

E. Prediction over time and iterations

To speed up the convergence of the relaxation process,

when starting the computations of a new time step t + H ,

each interface variable can be initialized to predicted values

obtained from its own history (see step 0 in Fig. 2). For

instance, with a first-order (linear) prediction, the predicted

value of variables x is given by:

x̃(t+H) = x(t)+
x(t)− x(t−H)

H
H = 2x(t)−x(t−H) ,

where the slope at time t has been approximated by finite

differences. A second-order prediction can also be used, which

relies on three points in the past. The predicted states are

computed as:

x̃(t+H) = a (t+H)
2
+ b (t+H) + c (17)

where a, b, and c are obtained by solving the linear system:










x(t− 2H) = a (t− 2H)
2
+ b (t− 2H) + c

x(t−H) = a (t−H)
2
+ b (t−H) + c

x(t) = at2 + bt+ c

(18)

Just after a large disturbance, such as fault inception or

clearing, a zero-order prediction is used for a sufficient number

of steps (3 to 5) before resorting to a higher-order prediction.
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Figure 7. One-line diagram of the Nordic test system [17]

The interface variables could also be predicted in between

the iterations of the same time step, based on the values at the

previous iterations. This technique was not contemplated due

to the already small number of iterations between EMT and

PM simulations taken by the proposed relaxation procedure.

IV. SIMULATION RESULTS

A. Test system

This section reports on simulation results obtained with a

74-bus, 102-branch, and 23-machine system. It is based on

a variant of the so-called Nordic test system detailed in [17].

The system one-line diagram is shown in Fig. 7 along with the

decomposition in PM and EMT sub-systems. The RAMSES

software, developed at the University of Liège, has been used

for the PM simulation [18]. The EMT sub-system simulator

was implemented in MATLAB. The results of the PM-EMT

co-simulation were systematically compared to those obtained

with EMTP-RV, and RAMSES where appropriate.

The trapezoidal rule was used in both the PM and the

MATLAB-based EMT solvers. The step size h was set to

 1
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Figure 8. Case 1a: Voltage magnitude at bus 4044

100 µs, and H to 0.02 s (one cycle at fundamental frequency),

giving a ratio H/h = 200. Moreover, for this system, the

ratio of the equation count in the EMT and in the pha-

sor models is 2287/609 = 3.75. Assuming that the effort

needed to simulate a set of differential-algebraic equations is

comparable in both simulators, the overall speed-up of the

PM over the EMT simulation can be roughly estimated as:

(Nb of EMT equations/Nb of PM equations) (H/h) ≃ 770.

In reality detailed EMT models are even more time-consuming

due to switching events, detailed control and protection

schemes, etc., which yields an even higher speed-up.

For accuracy and/or convergence of the PM solver, it may

be required to use a smaller value for H , e.g. one half, or even

one fourth of a cycle. In fact, a higher H is more demanding

for the convergence of the relaxation procedure. Hence, the

choice of one cycle can be considered a “worst case” from

the co-simulation viewpoint.

B. Case 1: Three-phase fault at bus 1042

In this scenario, a three-phase, solid fault is applied at

t = 1 s, on one of the two circuits between buses 1044 and

1042, very near the latter, in the EMT sub-system. The fault

is cleared by opening all three phases of the line. The nearby

machines contribute to imbalance of the system response.

This severe contingency could lead to transient (angle)

instability. Thus, two cases have been considered. In Case

1a, the fault is cleared in 10.5 cycles, just before the critical

clearing time is reached. In Case 1b, the fault is cleared in

12.5 cycles, which is higher than the critical clearing time.

1) Case 1a: Fault cleared before the critical time: A

comparison of the voltage evolutions at the boundary bus 4044,

obtained by EMT, PM and PM-EMT simulations, respectively,

is provided in Fig. 8. The curves clearly show that the response

of the PM-EMT co-simulation is very close to the EMT refer-

ence, given by EMTP-RV, while the PM response (computed

by RAMSES) shows delayed electromechanical oscillations

after t = 2 s. The figure zoom shows that the fault is applied

and cleared instantaneously in the PM simulation, owing to

the neglected rate of change of armature flux linkages, which

leads to representing the network through algebraic equations.

2) Case 1b: fault cleared after critical time: Due to the

delayed fault elimination in this scenario, machine g6 (located
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Figure 9. Case 1b: Rotor speed of generator g6
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Figure 10. Case 1b: Voltage magnitude at bus 4044

next to the fault) loses synchronism and separates with respect

to the rest of the system. This marginally unstable scenario is

a severe test, since small initial deviations can evolve into

large final excursions. Figure 9 shows the evolution of the

rotor speed of g6. Note that the simulation has been run, for

comparison purposes, until the speed reaches 1.1 pu while

the machine would be tripped by protections before that in

practice. A zoom on the on-fault period reveals, as expected,

an almost linear increase in the PM response, while the PM-

EMT and EMT evolutions show oscillations due to additional,

fast decaying torque components [4].

Figure 10 shows the corresponding evolution of the voltage

magnitude at the boundary bus 4044, given by the three

solvers. A good match is observed between PM-EMT and

EMT responses, which is not the case for the PM one.

C. Case 2: Single-phase fault at bus 1042

In this scenario, a single-phase, solid fault is applied at

t = 1 s on one of the two circuits between buses 1044 and

1042, very near the latter. The fault is cleared by opening all

three phases of the faulted line at t = 1.21 s (i.e. after 10.5

cycles). This case is of higher interest since it further justifies

the use of EMT simulation, and the phase imbalance is more

demanding for the PM-EMT coupling.

Figure 11 shows the evolution of the current in the 1044-

1042 circuit parallel to the faulted one (same phase as the fault)

before, during and shortly after the fault occurrence. The PM-
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Figure 12. Case 2: active and reactive powers injected at bus 4044

EMT co-simulation response matches pretty well the EMT

benchmark. The active and reactive powers flowing through

the boundary bus 4044 are shown in Fig. 12. It can be seen

that the electromechanical oscillations are preserved in spite

of the simplification of the distant PM sub-system.

D. Case 3: Tripping of Generator g9

This test is aimed at checking the accuracy of the PM-EMT

co-simulation in the presence of large frequency deviations. To

this purpose, the disturbance consists of tripping, at t = 1 s,

the 1000-MVA generator g9 located in the PM sub-system.

Note that most cases of practical interest involve disturbances

located in the EMT sub-system represented in greater detail.

The reverse is considered here, for checking purposes.

Figure 13 shows the influence of updating the Thévenin

equivalent with frequency, as discussed in Section III-B. The

plot shows ||V̄ k+1

4044 − V̄
k+1/2
4044 ||, where the upperscript symbols

are those defined in Fig. 3, and k corresponds to the last iter-

ation of the relaxation procedure. The lower values obtained

when updating with frequency indicates that the results of the

coupled EMT and PM simulations are more consistent.

The evolutions of the rotor speed of machine g13, located

near the boundary bus 4041, are shown in Fig. 14, focusing on

the time interval until frequency reaches its minimum. In this

case, due to PM approximations in the area near the tripped

generator g9, the PM-EMT evolution is comparatively less

accurate and closer to the PM rather than the EMT solution.

E. Convergence of the relaxation process

Table I provides the number of iterations of the relaxation

procedure, i.e. the number of cycles in Fig. 3 until convergence
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Table I
NB. OF RELAXATION ITERATIONS FOR VARIOUS BOUNDARY CONDITIONS.

“MED” DESIGNATES THE MEDIAN, AND “MAX” THE MAXIMUM VALUE

Boundary conditions (see Fig. 1)

Case (a) (b) (c) (d)
Med Max Med Max Med Max

1-a no conv. 2 9 3 25 2 4
1-b no conv. 3 9 4 25 3 4
2 no conv. 3 4 2 4 2 5
3 no conv. 2 13 3 6 2 4

Table II
NB. OF RELAXATION ITERATIONS FOR VARIOUS PREDICTIONS

Prediction:

Case zero-order first-order second-order
Med Max Med Max Med Max

1-a 3 4 3 4 2 4
1-b 3 4 3 4 3 4
2 3 4 2 4 2 4
3 3 4 3 4 2 4

is reached. For a given simulation, the numbers of iterations

were recorded at all time steps; the median and the maximum

of all values are shown in the table. A zero-order prediction

has been considered in all cases. The results relate to various

boundary conditions, identified by the letters in Fig. 1. It was

found that the conditions of type (a) did not make the iterations

converge (even in steady-state conditions). All other boundary

conditions led to convergence, and yielded the same dynamic

response [9]. The performances of type (c) vary too much from

one case to another; type (d) is consistently the best.

For illustration purposes, Fig. 15 shows the successive

values of the active and reactive powers at the boundary bus

4041, in Case 2 and at time t = 1.02 s (starting from the

solution at t = 1.00 s), i.e. right after the fault inception.

With the boundary conditions of type (c), four iterations are

needed, while with type (d), three iterations are enough.
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Figure 15. Case 2: Iterations at t = 1.02 s; boundary conditions (c) and (d)

Table II shows similar results, but when varying the order

of the prediction, as explained in Section III-E. The same

four cases have been simulated with boundary conditions of

type (d). Zero-, first-, and second-order predictions have been

considered. It is observed that the second-order prediction

consistently gives the least number of iterations, as expected.

F. Co-simulation with a single iteration

For computational efficiency and in applications such as

hardware-in-the-loop simulations, it is of interest to perform

a single iteration of the relaxation process, involving thus a

single EMT simulation per time step H . Limiting the number

of iterations to one obviously introduces some approximation,

which is illustrated in Figs. 16 and 17.

Figure 16 relates to Case 1b, with zero-order prediction and

boundary conditions of type (b), (c) and (d), respectively. It

shows the relative error on the complex power at the boundary

bus 4044, namely:

√

(P1it − Pfc)2 + (Q1it −Qfc)2
√

P 2
fc +Q2

fc

,

where P1it + jQ1it is the complex power obtained when

performing a single iteration, and Pfc+ jQfc the same power

from a fully converged co-simulation. The results further

confirm the superiority of boundary conditions of type (d).

Figure 17 shows the same relative error, in all test cases,

using boundary conditions of type (d) and second-order pre-

diction. It can be concluded that a single iteration yields very

good accuracy.

Finally, Fig. 18, relative to Case 1-a, compares the error

caused by imposing a single iteration of co-simulation to

the error observed between the fully converged PM-EMT co-

simulation and the benchmark. It can be concluded that forcing

a single iteration adds comparatively very little error to the one

resulting from the phasor approximation.

V. CONCLUSION

A co-simulation method has been presented, aimed at com-

bining EMT and PM models. The approach is built on the

premise that, with modern solvers, the EMT sub-system can
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Figure 17. Relative error on complex power at bus 4044 when performing a
single co-simulation iteration, using boundary conditions of type (d)

be enlarged to the extent that, at the interface with the PM

sub-system, the three-phase voltages and currents are almost

sinusoidal and balanced.

The relaxation process involves time interpolation and pha-

sor extraction. The latter is based on least-square fitting. It does

not introduce any delay, while the residuals allow monitoring

how closely the EMT response matches the above mentioned

ideal conditions.

Dynamically updated Thévenin - Norton equivalents are

essential for good convergence. Prediction before proceeding

with a new co-simulation time step, and updating the Thévenin

equivalent with frequency are also recommended.

Simulation results show that a single co-simulation iteration

can be envisaged without significant degradation of accuracy.

So far, the selection of the boundary buses relies on engi-

neering judgment. Efforts towards the automation of this se-

lection is a direction of future research. As far as convergence

is concerned, the most demanding situation is likely to be

the one with a “small” EMT sub-system surrounding the fault

location, in which case the interface variables do not evolve as

expected by the PM solver. However, previous tests on such

a small EMT sub-system have not shown convergence issues.

Further applications will involve power-electronics compo-

nents modeled in detail in the EMT sub-system.
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Figure 18. Case 1-a: Relative error on complex power at bus 4044 when
performing a single co-simulation iteration, compared to the error of the fully
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