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Abstract—Over the last decades, several techniques have been
proposed for the optimal placement of FACTS devices across
power systems. Although these techniques were shown to im-
prove power system operation, they are usually computationally
intractable while having serious inherent limitations. In this
paper, we present a novel approach to guide the SVC loca-
tion identification in order to enhance power system stability.
Specifically, the proposed method exploits findings in passivity-
based control analysis and design in order to address the most
vulnerable -in terms of passivity- buses of the system and
consequently the optimal locations for SVC installation. We then
show how the incorporation of SVCs at the aforementioned buses
can passivate the system and provide guarantees for increased
stability. Furthermore, we provide a brief discussion regarding
the sizing and the number of required SVC devices in order to
guarantee such stability improvement. Finally, we illustrate our
results with simulations on the IEEE 68 bus system and show
that both the dynamic response and the damping of the system
are significantly improved.

Index Terms—power system stability enhancement, passivity,
Static Var Compensator (SVC), optimal placement

I. INTRODUCTION

During the last decade, there has been a constant societal

push to make electric power systems more sustainable and

economical. This push along with the new increased electricity

demands has resulted in current power systems operating

close to their stability and loadability limits. Flexible AC

Transmission System (FACTS) devices have been identified as

ideal to improve system stability and increase these limits [1].

However, due to their high cost, their location in the network

should be carefully selected to maximize the stabilizing ef-

fects.

Several techniques based on either optimization procedures

or sensitivity and stability indices have been proposed in the

past [2]–[7]. Optimization techniques require tackling non-

linear, mixed integer, problems which can prove computation-

ally intractable. At the same time, techniques based on indices

coming from the linearization of the system have inherent

limitations [8].

Recent studies have shown that the principle of passivity

can be used to assess the stability of large-scale systems and

to design appropriate controls that can enhance system perfor-

mance [9]–[12]. An interesting feature of this key structural

property is the ability to perform the analysis locally and

combine the results to decide about the stability of the entire

system. This allows identifying the “weaker” areas of the

system through the lack of passivity and selecting the optimal

location of FACTS devices to passivate the entire system and

provide guarantees for stability and robustness.

In this paper, we propose a novel, optimal placement tech-

nique for Static Var Compensator (SVC) devices to enhance

system stability. This method exploits findings in passivity-

based control analysis and design to guide the SVC location

installation. It should be mentioned that the methodology

proposed in the next sections can be easily applied to the

placement of other types of FACTS devices. However, for

simplicity, in this work, we will only deal with the placement

of SVCs.

First, we describe the dynamic models used to represent

the power system components within the proposed approach.

The models use the multi-variable, system reference-frame

approach presented in [12]. Then, by considering that ev-

ery power network with arbitrary topology satisfies certain

passivity properties [12], we identify the passivity indices

revealed when the loads are incorporated into the analysis.

These passivity indices are derived through the formation of

an aggregate network model that describes the power grid

while capturing the effect of the loads as well. The proposed

placement approach is then formulated by identifying the

areas in the aggregate model where the passivity condition

is violated. Particularly, we identify the most vulnerable -in

terms of passivity- buses of the system and consequently the

optimal locations for the SVC installation. SVCs are then

applied to these locations in order to “passivate” the aggre-

gate network model via feed-forward passivation [13]. We,

therefore, achieve to guarantee the overall enhancement of the

power system stability while providing important information

regarding the sizing and the number of required SVC devices.

Our findings are illustrated through dynamic simulations on

the IEEE 68-bus test system, where we use the developed

technique to drive the SVC installation considering an average

loading of the system. A significantly improved response of the

system is achieved during a generation-load imbalance, even

when only a small percentage of buses is equipped with SVCs.

The effectiveness of the proposed passivity-base approach for

the SVC placement is also supported by monitoring the power

system oscillatory modes.



The rest of the paper is organized as follows: In Section II,

we present the models for the network, the SVC and the loads.

The passivity properties satisfied within the power systems are

provided in Section III. Section IV then presents the passivity-

based approach for the optimal placement of SVCs, while

also providing a brief discussion regarding the sizing and

the number of the required SVC devices. In Section V, we

illustrate our results through simulations on the IEEE 68 bus

system. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, we describe the models that are used to

represent the power network, the SVCs and the loads. All

models are formulated as multi-input/multi-output systems and

expressed in the system reference-frame i.e., two common axes

rotating at synchronous frequency ωs.

A. Power network model

A power network with arbitrary topology can be described

by a connected and undirected graph (N ,E ), where N =
{1,2, . . . |N |} is the set of buses and E ⊂ N ×N the set

of transmission lines connecting them. We use (i, j) to denote

the link connecting the network buses i and j.

For the derivation of the equations describing the network,

we consider the following assumptions.

Assumption 1: Transmission lines are represented by sym-

metric three-phase RLC elements and modeled by their Π-

equivalent.

Assumption 2: Transmission line dynamics evolve on a

much faster timescale than the dynamics of the generation

sources and the loads.

According to Assumption 2, the transmission lines reach

steady state much earlier than the generators and the loads.

The power network can therefore be modeled by the network

current flows given by the nodal set of equations:

Ī = Y NV̄ (1)

where Y N is the C
|N |×|N | bus admittance matrix of the

network. Ī ∈ C
|N | and V̄ ∈ C

|N | denote the net injected

current and the bus voltage vectors respectively. The elements

of the net injected current and the bus voltage vectors are both

expressed in phasor form since the analysis assumes balanced

and symmetric operating conditions.

The nodal admittance matrix Y N is a complex symmetric

matrix which can be written in rectangular form as

Y N = GN + jBN (2)

where GN , BN ∈R
|N |×|N | are the network’s conductance and

the susceptance matrices respectively. GN and BN are both

real, |N |× |N |, sparse symmetric matrices.

Similarly to the nodal admittance matrix, the net injected

current and bus voltage vectors are also expressed in the

rectangular complex form to develop the analytic network

Figure 1. Example of SVC structure

equations. The net injected currents and bus voltages can

therefore be written as

Īi = Ii∠φI,i = Ii cosφI,i + jIi sinφI,i = Ia,i + jIb,i (3)

V̄i =Vi∠φV,i =Vi cosφV,i + jVi sinφV,i =Va,i + jVb,i (4)

for all i ∈ N . We now define the vectors Ia =
[Ia,1 Ia,2 ... Ia,|N |]

T , Ib = [Ib,1 Ib,2 ... Ib,|N |]
T , Va =

[Va,1 Va,2 ... Va,|N |]
T and Vb = [Vb,1 Vb,2 ... Vb,|N |]

T ∈ R
|N |,

and the net injected current and the bus voltage vectors are

thus given in the following form:

Ī = Ia + jIb (5)

V̄ = Va + jVb (6)

respectively. By substituting equations (2) and (5)-(6) into (1)

we get:

Ī = Ia + jIb = (GNVa −BNVb)+ j(BNVa +GNVb) (7)

where

Ia = GNVa −BNVb (8)

Ib = BNVa +GNVb. (9)

From (8), (9) we deduce the net injected current components,

Ia,i and Ib,i, at each bus i = 1,2, . . . , |N |, which are given by:

Ia,i =
|N |
∑
j=1

(GN
i jVa, j −BN

i jVb, j) (10)

Ib,i =
|N |
∑
j=1

(BN
i jVa, j +GN

i jVb, j) (11)

Finally, we derive the power network model as a (2×|N |)-
input/(2×|N |)-output system, similarly to [12], and we write

(8)-(9) in a compact matrix form as follows:
[

Ia

Ib

]

︸︷︷︸

yn

=

[
GN −BN

BN GN

]

︸ ︷︷ ︸

HN

[
Va

Vb

]

(12)



B. SVC model

Typically, a SVC comprises of one or more banks of fixed

or switched shunt capacitors or reactors, of which at least one

bank is switched by thyristors. A typical structure of a SVC

installation is illustrated in Fig. 1.

Although several detailed models have been proposed in the

literature to capture the dynamic characteristics of SVCs, in

this paper, we derive a simple, linearized model which facil-

itates our analysis but still captures the necessary dynamics.

The model is based on the Basic Model 1 presented in [14]

and is described by

Bsvc
i (s) =

KR · (1+ sT1)

(1+ sTR)(1+ sT2)
(13)

where the variables Bsvc
i , V

re f
i and Vi denote the SVC sus-

ceptance, the reference voltage, and the voltage magnitude at

bus i, respectively. KR is the regulator gain constant while

TR, T1 and T2 are the regulator and compensator lead and

lag time constants, respectively. The aforementioned model

is widely used in several dynamic simulation programs such

as PST [15], even though it omits the SVC measurement and

the thyristor susceptance control modules. The model (13),

has a susceptance range which can be easily computed by the

formulas given in [14].

In order to derive a (2 × |N |)-input/(2 × |N |)-output

system similarly to the network model (12), we transform

the transfer function (13) into state-space form. Next, by

considering that the mappings of the current output of the

SVC are given by

Īi = jBsvc
i V̄i → Ia,i =−Bsvc

i Vb,i and Ib,i = Bsvc
i Va,i

and that Vi =
√

V 2
a,i +V 2

b,i and Ii =
√

I2
a,i + I2

b,i we get the

following multi-variable system
[

Ia,i

Ib,i

]

=

[
T a

i (s) T b
i (s)+Bsvc

i

−T b
i (s)−Bsvc

i T a
i (s)

]

︸ ︷︷ ︸

Hsvc
i (s)

[
Va,i

Vb,i

]

. (14)

We note here that the above system is derived through the

linearization of the SVC model (13) around its operating

point. Hsvc
i (s) denotes the 2×2 proper transfer function matrix

relating the voltage components Va,i and Vb,i with the current

components Ia,i and Ib,i while the transfer functions T x
i (s) are

given by

T x
i (s) =

Kx
I · (1+ sT1)

(1+ sTR)(1+ sT2)
. (15)

where x ∈ {a,b}. The gain constants Kx
i (i.e., Ka

i and Kb
i )

are derived through the linearization procedure and satisfy the

following inequalities

Ka
i ≥ Kb

i ≥ 0. (16)

Remark 1: The multi-variable model (14) that we adopt

in this paper, captures both the capacitive and the inductive

operation of SVCs.

C. Load model

Loads are represented by a dynamic model modified

from [16] so as to fit our multi-variable framework. Consid-

ering that for every load the following hold

Īi = Ia,i + jIb,i =−(GL
i −BL

i )Va,i − j(GL
i +BL

i )Vb,i i ∈ N

the load model is given by
[

Ia,i

Ib,i

]

=

[
−GL

i (s) BL
i (s)

−BL
i (s) −GL

i (s)

]

︸ ︷︷ ︸

HL
i (s)

[
Va,i

Vb,i

]

(17)

where HL
i (s) denotes the 2× 2 transfer function matrix that

describes the dynamic behavior of loads. The matrices GL
i (s)

and BL
i (s) present the dynamic behavior of the resistive and

inductive/capacitive parts of the loads, respectively.

In the case of a constant impedance load, the model of (17)

can be further simplified as:
[

Ia,i

Ib,i

]

=

[
−GL

i BL
i

−BL
i −GL

i

]

︸ ︷︷ ︸

HL
i

[
Va,i

Vb,i

]

(18)

where HL
i ∈ R2×2 is now the matrix relating the voltage

components with the net injected current components in the

same manner as HN in the network model formulation. GL
i

and BL
i are constant, time-invariant values. The negative sign

in the aforementioned models appears due to the fact that Ia,i

and Ib,i denote the components of the net absorbed current

rather than the net injected current.

III. PASSIVITY INDICES WITHIN POWER NETWORKS

A. Passivity of the network model

In order to examine the passivity property that is revealed

for the network system through the aforementioned multi-

variable modeling, we first provide the following fundamental

passivity definition [17].

Definition 1: Consider the system described by the mem-

oryless function y = g(t,u) where g : [0,∞)×R
p → R

p. This

system is passive if uT y ≥ 0.

As stated above, the static network model (12) is passive

only when the inequality of Definition 1 is satisfied, that is

uT y = [V T
a V T

b ]

[
Ia

Ib

]

≥ 0 (19)

for all Va, Vb, Ia, Ib ∈ R
|N |.

Lemma 1: The network system defined in (12) with inputs

the vectors of bus voltage components [V T
a V T

b ]T and outputs

the vectors of net injected current components [IT
a IT

b ]
T is

passive.

Proof of Lemma 1: By substituting the network equations

(12) in inequality (19) we get

uT y =[V T
a V T

b ]HN

[
Va

Vb

]

= [V T
a V T

b ]

[
GN −BN

BN GN

][
Va

Vb

]

=V T
a GNVa +V T

b GNVb ≥ 0

(20)



for all Va, Vb ∈ R
|N |. The inequality (20) reveals that the

passivity of the network is ensured when the composite matrix

HN , or equivalently its diagonal elements GN , are positive

semidefinite matrices.

GN ∈R
|N |×|N | is a square, sparse, symmetric, matrix with

non-negative diagonal and negative off-diagonal elements, i.e.,

GN
ii ≥ 0 and GN

i j ≤ 0 ∀ i, j = 1,2, . . . , |N |. It is also diagonally

dominant as the following equation holds:

|GN
ii |=

|N |
∑
j 6=i

|GN
i j| ⇔ GN

ii =−
|N |
∑
j 6=i

GN
i j, (i, j) ∈ E (21)

In order to prove the positive semidefiniteness of the matrix

GN , we make use of the Geshgorin Circle Theorem [18].

We therefore define the Geshgorin discs Di(G
N
ii ,Ri), i =

1,2, . . . , |N | of the matrix GN . Di is a closed disc centered at

(GN
ii ,0), with radius Ri =∑i6= j |GN

i j|. As stated above the matrix

GN has positive diagonal elements and is also diagonally

dominant. Subsequently, its Geshgorin discs lie in the right

half plane, have center on the real axis and are tangent to

the imaginary axis since GN
ii − Ri = 0, ∀ i = 1,2, . . . , |N |.

According to the Geshgorin circle theorem, the eigenvalues of

the matrix GN lie within its Geshgorin discs, corresponding to

its columns (or equivalently to its rows). Subsequently, GN has

eigenvalues with non negative real parts which immediately

leads to the fact that it is positive semidefinite [19]. Condition

(19) is therefore satisfied. �

We see within the proof of Lemma 1 that the condition

(19) always holds and the passivity of the system’s network

is ensured regardless of its topology. Specifically, due to the

form of the composite matrix HN , the positive semidefiniteness

of the network’s conductance matrix GN is sufficient for the

condition (19) to be satisfied. GN in turn, is always positive

semidefinite since it has positive diagonal elements and its

diagonal dominance is never violated.

B. Load effect

We are now about to examine how the grid connected loads

affect the passivity of the network model (12). In the previous

section, we considered that each load bus forms a 2-input/2-

output system while any bus that does not consist of any load

is represented by zero dynamics. Thus, we define the following

aggregate model which is derived by the parallel interconnec-

tion of the network and the aggregate load dynamics. The

combined model is given by
[

Ia

Ib

]

=HAGG

[
Va

Vb

]

=
(

HN +HL
)[

Va

Vb

]

=

[
GN −GL −BN +BL

BN −BL GN −GL

][
Va

Vb

] (22)

where HAGG and HL denote the transfer function matrices

of the aggregate network model and all the grid connected

loads respectively. The aggregate model (22) can be further

simplified under the consideration of constant impedance loads

(18).

As we observe from both the load models (17)-(18), loads

constitute a non-passive system since the matrices HL
i (s) and

HL
i do not satisfy the requirement of positive realness and

positive semidefiniteness respectively [20]. Thus, the incorpo-

ration of the loads into the network model (aggregate model

(22)) results in the violation of its passivity. Equivalently, due

to the fact that the aggregate model (22) is derived by the

parallel interconnection of the network and the load systems,

we can also say that it has a shortage of passivity or it lacks

Input Feed-forward Passivity (IFP) [13].

Remark 2: In the current section, we provided a brief

overview of the passivity indices within power systems. How-

ever, we did not discuss how the generators, which are the most

vital components of a power grid, affect its overall passivity.

As discussed in [9], [21], [22], synchronous generators usually

constitute passive dynamical systems which can guarantee the

asymptotic stability of the power system, or can be passivated

with sufficiently high damping. This is also verified in [12]

with examples involving more advanced generator models

formulated at the system reference frame.

IV. OPTIMAL PLACEMENT OF SVCS

In this section, we investigate the optimal SVC placement

for enhancing the overall stability of the power system. First,

we assess each bus vulnerability index – in terms of passivity

– and then explain how SVCs can passivate the aggregate

network model and subsequently enhance the power system

stability. Finally, a brief discussion regarding the sizing and

the number of the required SVC devices in order to guarantee

the power system stability enhancement is also provided.

A. Bus vulnerability assessment

In order to address the network’s vulnerable buses, we

follow a novel, yet effective, approach based on the Geshgorin

Circle Theorem which was employed for the proof of the

passivity of the network model (Lemma 1). We should note

here that in order to facilitate our analysis for the identification

of the vulnerable buses of the grid we adopt the constant

impedance load model (18).

As mentioned in Section III, the passivity of the network

model is guaranteed due to the diagonal dominance of the

conductance matrix of the network GN . However, the in-

corporation of the grid connected loads into our analysis

results in the violation of the network’s passivity which is

now represented by (22). The passivity of the aggregate

network model (22) depends now on the positive definiteness

of the aggregate conductance matrix GAGG = GN −GL. Due

to the fact that the load conductance matrix −GL constitutes

a diagonal matrix with non-positive diagonal elements, the

Geshgorin discs corresponding to the respective columns/rows

of GAGG are now displaced by GL
ii towards the left half plane,

thus violating the passivity property of the power network. The

graphical illustration of the effect of the load incorporation into

the power network analysis is presented in Fig. 2.



Figure 2. Graphical representation of the Geshgorin disks corresponding to
the ith column/row (bus i) of the matrices GN and GAGG.

We therefore define the Geshgorin discs D′
i(G

AGG
ii ,R′

i) of

the aggregate conductance matrix where the diagonal ele-

ment GAGG
ii defines the center and R′

i the radius of the disc

corresponding to the column/row i = 1, 2, . . . , |N |. Each

bus i ∈ N vulnerability index can now be calculated as the

percentage of the Geshgorin disk that lies in the left half plane.

The vulnerability index of bus i is therefore given by

vi = A′
i / Ai ×100 (23)

where A′
i and Ai denote the area of the disk lying at the left half

plane and the total area of the Geshgorin disc i respectively. A

large vulnerability index indicates a large probability for HAGG

to have an eigenvalue in the left half plane. This could increase

the possibility for the power system to exhibit an oscillatory

behavior due to the violation of the passivity property.

B. Feed-forward passivation of the power network

Passivation is the procedure to render a system that lacks

passivity passive via either feed-back or feed-forward inter-

connection [13]. Due to the fact that passive systems are

stable and easy to control, passivation is often a useful tool in

control design. In this paper, we identify the optimal locations

for SVC installation in order to achieve the feed-forward

passivation of the power network and thus to improve power

system stability. Before presenting how the power network is

passivated through the SVC installation we first provide the

following passivity definition regarding Linear Time Invariant

(LTI) systems.

Definition 2: Let a dynamic system represented in Laplace

domain by its p× p proper rational transfer function matrix

G(s). The aforementioned system is passive if G(s) is positive

real, i.e.

a) poles of all elements of G(s) are in Re(s)≤ 0

b) for all real ω for which jω is not a pole of any ele-

ment of G(s), the matrix G( jω)+GT (− jω) is positive

semidefinite, and

c) any pure imaginary pole jω of any element of G(s) is a

simple pole and the residue matrix lims→ jω(s− jω)G(s)
is positive semidefinite Hermitian.

Lemma 2: If the time constants of the SVC are selected

such that T2 ·TR/(T2 +TR)≤ T1 ≤ 1+T2 +TR, the SVC model

defined in (14) is passive.

Proof of Lemma 2: Since all time constants of the SVC

model (14) are real and positive, it is straightforward to prove

the first and the third conditions in Definition 2, that is, the

poles of all elements of Hsvc
i (s) are real and lie in the left half

plane.

From the SVC model (14), we now compute the sum of the

SVC transfer function matrix and its conjugate transpose, i.e.

Hsvc
i ( jω)+Hsvc

i (− jω)T =

=
2

(1+ω2T 2
2 )(1+ω2T 2

2 )

[
Ka

i K̂ jKb
i K̄

− jKb
i K̄ Ka

i K̂

]
(24)

where K̂ = 1+ω2
(
T1(T2+TR)−T2TR

)
and K̄ = T1−T2−TR−

ω2T1T2TR. Considering that K̂ ≥ 0, time constants T1, T2 and

TR are selected as stated within the Lemma 2, and condition

(16) holds,

Hsvc
i ( jω)+Hsvc

i (− jω)T ≥ 0 (25)

for all ω . The second condition of Definition 2 is therefore

satisfied, and the SVCs constitute passive systems. �

We therefore consider that SVCs are applied to the optimal

locations across the grid. The aggregate network model (22)

now becomes:
[

Ia

Ib

]

= HAGG′
[
Va

Vb

]

=
(

HN +HL +HSVC
)[

Va

Vb

]

(26)

where HAGG′
and Hsvc denote the transfer function matrices of

the modified aggregate network and all grid connected SVCs

respectively. The feed-forward passivation of the aggregate

network model (22) is now carried out via the parallel inter-

connection of passive systems at the most vulnerable - in terms

of passivity - buses of the grid. Consequently, this results to

the power system stability enhancement and also the reduction

of the reactive power flows across the power grid.

Remark 3: We should note that the proposed approach

can be further exploited in order to incorporate other FACTS

devices, such as TCSCs, UPFCs etc. These devices not only

could improve the power system stability, but they could also

increase the transmission system transfer capability and further

reduce the transmission losses [1].

Remark 4: An effective method to verify if whole power

system is passive, it is the use of the Kalman-Yakupovich-

Popov (KYP) lemma [17]. Particularly, KYP lemma can be

employed within a Linear Matrix Inequality (LMI) problem in

order to verify the passivity of the whole system as extensively

described in [23, Section 2].

C. Location and Sizing of SVCs

The proposed technique allows identifying the buses that

violate passivity. These can be sorted according to their

severity based on the vulnerability index vi. In order to then

passivate the system, an SVC can be connected to each of the

violating buses to counteract the effect of the load. The size of

each individual SVC can be computed through the value of KI



Figure 3. Single line diagram of the IEEE 68-bus test system (New York /
New England).

(see Eq. 15) necessary to shift the Geshgorin disk to the right-

hand side while its time constants shall fulfill the requirements

stated in Lemma 2. This can be seen visually in Fig. 2. The

passivity of the entire system can then be verified by applying

the KYP lemma (see Remark 3) on the new system including

the SVCs.

However, due to the local effect of each SVCs, in order to

passivate the entire system, we would need as many SVCs

as the number of violated buses. The actual number of SVCs

required will be smaller as the synchronous generators will

provide some passivation to the system and can then be derived

by employing the KYP lemma described in the previous

subsection (see Remark 4).

While passivating the entire system would provide some cer-

tificates for the system stability, it is usually not cost effective.

Moreover, passivity provides more conservative boundaries

for the system. Alternatively to passivating the entire system,

when only a specific SVC “budget” is available (in terms of

size and number of SVCs), then the previous procedure can

be used to prioritize the installation based on the vulnerability

index.

V. SIMULATION RESULTS

In this section we verify our framework using the IEEE

New York / New England 68-bus interconnection system [24],

which is presented in Fig. 3. The aforementioned testbed sys-

tem consists of 16 generator and 24 load buses. The generators

and the loads are represented by the fourth-order synchronous

generator model and the ZIP model respectively [25]. The

generators are equipped with turbine governors, a simple

excitation system and Power System Stabilizers (PSSs) while

loads include induction motors as well.

Considering a “budget” of 14 SVCs, we prioritize their in-

stallation in order to achieve the greatest stability improvement

possible. We thus compute the vulnerability indices of the

network using the method proposed within the current paper

and find the most vulnerable buses of the testbed system, i.e.

Figure 4. The voltage deviation at bus 9.

Figure 5. The frequency deviation at bus 9.

3, 4, 8, 15, 21, 23, 24, 28, 45, 46, 48, 49, 50, 51. The provided

SVCs have the following prefixed characteristics: KR = 20 pu,

TR = 0.05 s, T1 = 0.65 s and T2 = 0.2 s.

Our approach is verified through a dynamic simulation and

an eigenanalysis of the test system, using the Power System

Toolbox (PST) [15]. Both the dynamic simulation and the

eigenanalysis are carried out considering average loading, for

the following four different cases: (i) no PSSs applied on

generators / no SVCs installed at the grid, (ii) no PSSs applied

on generators / SVCs installed at the grid, (iii) PSSs applied

on generators / no SVCs installed at the grid, and (iv) PSSs

applied on generators / SVCs installed at the grid.

For the dynamic simulation, we apply a step load change of

100 MW to the load buses 1, 7, 21 and 40. The enhancement

of the system’s stability is illustrated by the voltage and

the frequency deviation at bus 9, shown in Figs. 4 and 5,

respectively. As observed, the proposed SVC placement results

in a significantly improved response and the suppression of

the occurring oscillations either when PSSs are applied to the

excitation systems of the generators or not.

The stability enhancement achieved through the proposed

approach is also illustrated through the eigenanalysis of the

test system. As it can be seen from Fig. 6, the application

of SVCs using the proposed technique damps the calculated

modes when PSSs are either applied to the generators or not.

More specifically, for the case (i) the system is small-signal

unstable since there exists an eigenvalue on the positive real



Figure 6. Eigenanalysis of the IEEE 68 bus test system.

axis. The application of SVCs on the most vulnerable buses

(case (ii)) stabilizes the system moving all the eigenvalues

to the left half plane. Moreover, all the modes have a better

damping ratio1 when the SVCs are connected. Although the

application of PSSs on the excitation systems of the generators

improves further the small-signal stability of the test system,

the SVC installation at the selected locations results in a more

stable response. The damping ratio of both the local and the

interarea modes of the system is significantly increased for the

cases (iii) and (iv), respectively.

Finally, it should be noted here that the SVCs were not

designed to provide oscillation damping or target any specific

oscillatory modes. The stability improvement arises through

the passivation of the system. While not considered in this

paper, the application of a Power Oscillation Damping con-

troller to the installed SVCs could facilitate the damping of

inter-area oscillations and further enhance system stability. In

particular, by measuring the local frequency at the SVC bus,

we can design an SVC control to also target specific system

modes, similarly to the PSS.

VI. CONCLUSIONS

In this paper, we proposed a novel passivity-based technique

for the optimal placement of SVCs to improve the power

system stability and robustness. We first introduced the mod-

els describing the network, the SVCs and the loads, which

were formulated as multi-input/multi-output systems. We then

provided the passivity indices arising within the power system

under such formulation and proposed a novel way to identify

the grid’s optimal locations and sizing for SVC installation.

Based on the local load size and behavior, we employed the

feature of the feed-forward passivation in order to passivate

the power system and thus enhance its stability. Finally, we

illustrated the effectiveness of the presented technique on the

IEEE 68 bus test system by applying SVCs to the fourteen

most vulnerable buses of the system.
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