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Abstract—This paper deals with the small-signal stability
analysis of converter control modes in low-inertia power systems.
For this purpose, a detailed differential-algebraic equation model
of the voltage source converter and its control scheme is devel-
oped. Both grid-forming and grid-feeding concepts have been
considered, as well as different active power controllers based on
traditional droop and virtual inertia emulation. An eigenvalue
analysis of the linearized state-space system is conducted and
the performance of different control configurations is compared.
Furthermore, various bifurcation studies have been completed
and conclusions on stability margins have been drawn with
respect to control sensitivity and robustness.

Index Terms—voltage source converter (VSC), virtual inertia
emulation, small-signal stability, low-inertia systems

I. INTRODUCTION

The penetration of Voltage Source Converters (VSCs) in

power systems is drastically increasing, with them acting as

a grid interface for emerging renewable generation. As they

are based on power electronics, the physical inertia of the

generators is now electrically decoupled from the network,

resulting in low-inertia systems and imposing new challenges

regarding system stability [1]. In order to capture the system

dynamics in the presence of converters, new Differential-

Algebraic Equation (DAE) models must be developed for the

purposes of small-signal analysis.

The work in [2] investigated the stability of a VSC control

scheme based on the virtual swing equation. However, there

was no external power control included in the model, and the

implementation of the damping restricted the applicability of

the studied control system. An extension of this control design

was presented in [3], where a frequency droop was included

in the outer loop, together with the Phase Locked Loop

(PLL) and virtual impedance. The same control system and

the corresponding small-signal model was further elaborated

and analyzed in [4]. Nonetheless, both approaches focus on a

single power control design and put emphasis on the grid-

connected operation only. Since the potential VSC control

configurations [5]–[7], as well as the operation modes [8],

[9] can be quite versatile, requirements for a more general

modeling approach are emerging.

The contribution of this work is two-fold. First, we introduce

a uniform VSC model with a detailed, state-of-the-art control
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structure. Two active power control approaches are proposed

under different converter operation modes. Subsequently, an

analytical formulation of the DAE system, together with the

respective small-signal model is derived. Second, the stabil-

ity margins of different VSC configurations are investigated

through eigenvalue analysis and various bifurcation studies.

The remainder of the paper is structured as follows. In

Section II, a detailed VSC control scheme is presented, as

well as the respective analytical formulation of the DAEs.

Section III describes the small-signal modeling and state-space

representation. Section IV showcases the stability analyses

results, whereas Section V concludes the paper.

II. VSC CONTROL SCHEME

An overview of the implemented converter control scheme

is shown in Fig. 1, where a VSC is connected to a constant

active power load and a grid through a Low-Pass Filter (LPF)

and a transformer. The outer control loop consists of active and

reactive power controllers, which provide the output voltage

angle and magnitude reference by adjusting the predefined

setpoints according to a measured power imbalance. The

reference voltage vector signal is sent to the inner control

loop consisting of cascaded voltage and current controllers

operating in a Synchronously-rotating Reference Frame (SRF).

In order to detect the system frequency at the Point of

Common Coupling (PCC), a PLL-based synchronization unit

is included in the model.

The complete modeling, analysis and control of the con-

verter is implemented in an SRF, with the (abc/dq)-block

denoting a sequence of power-invariant Clarke (T c) and Park

(T p) transformations from a stationary (abc)-frame to the

SRF:

xdq =

√

2

3




cos θ cos (θ − 2π

3 ) cos (θ + 2π
3 )

sin θ sin (θ − 2π
3 ) sin (θ + 2π

3 )





︸ ︷︷ ︸

T pT c

xabc (1)

It should be noted that the mathematical model is defined in

per unit (denoted by lower-case symbols), and the quantities

in the (dq)-frame are described in complex space vector form:

x ≡ xdq = xd + jxq (2)

with the dq superscript omitted in the remainder of the paper.

Furthermore, the external control setpoints, e.g. the active

power reference, are marked with x∗, whereas the internally
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Fig. 1: Investigated system configuration and VSC control structure.

computed references are represented as x̄. The configuration of

the aforementioned main control blocks is depicted in Fig. 2,

while the mathematical formulation of the proposed DAE

model is elaborated in more detail below.

A. Electrical System and Power Calculation

The VSC can be operated in islanded and grid-connected

mode through a switch operation, as indicated in Fig.1. In both

cases, the electrical system includes an LPF (rf , lf , cf ) and a

transformer equivalent (rt, lt) to model the respective copper

and iron losses. Hence, the SRF state-space equations for the

grid-connected case are formulated as follows:

i̇s =
ωb

lf
(vm − eg)−

(
rf
lf

ωb + jωbωg

)

is (3)

i̇g =
ωb

lg + lt
(eg − vg)−

(
rg + rt
lg + lt

ωb + jωbωg

)

ig (4)

ėg =
ωb

cf
(is − ig)− jωgωbeg (5)

where is is the switching current flowing through the filter

inductance, vm is the modulation voltage at the converter

output, ig is the current flowing into the grid, eg is the output

voltage across the filter capacitance, and vg is the voltage of

the grid equivalent. The resistance and inductance of the grid

are denoted as rg and lg , while the grid and base frequency

are represented as ωg and ωb, respectively. For the sake of

simplicity, the electric system is modeled in the SRF defined

by the Active Power Control (APC).

The analysis of an islanded operation mode can be done by

replacing the expression (4) with:

i̇g =
ωb

lt
(eg − vg)−

(
rt
lt
ωb + jωbωg

)

ig (6)

vg = rlig =
v2l
pl

ig (7)

while defining the active load as a function of active power

consumption (pl) and constant voltage amplitude (vl). Finally,

the power calculation block computes the active and reactive

power output of the converter by processing the measurements

of voltage and current after the filter:

p = ℜ(egi
∗

g) , q = ℑ(egi
∗

g) (8)

with i∗g being a complex conjugate of the grid current.

B. Phase-Locked Loop

The synchronization unit is implemented as a Type-2 PLL,

which estimates the grid frequency and keeps the VSC syn-

chronized in a grid-feeding mode of operation [10]. A PLL

acts as an observer and tracks the frequency by measuring

the stationary output voltage (eabcg ), transforming it into an

internal (dq)-frame (êg), and passing it through a PI-controller

that acts on the phase angle difference. The synchronization

is achieved by aligning the d-axis of the internal SRF with

the stationary (abc)-frame and diminishing the q-component,

as described in [9]. A mathematical formulation is presented

in (9)-(11), and a detailed control structure is given in Fig. 2a.

ωpll = ωn +Kpll
p êqg +Kpll

i ε (9)

ε̇ = êqg (10)

θ̇pll = ωpllωb (11)

The estimated frequency and angle are represented as ωpll and

θpll, whereas ωn and ε are the nominal frequency and integra-

tor state, respectively. It should be noted that the Park trans-

formation within the PLL is completely independent of the

transformation used for the electrical circuit in Section II-A,

and therefore introduces a second SRF into the system. Hence,

the internally computed output voltage is denoted as êg .

C. Active Power Control

Since the focus of this work is on converter operation

on a transmission grid level, the active power control has
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Fig. 2: Main control blocks of the converter control scheme:

(a) phase-locked loop; (b) active power controller emulating

virtual inertia; (c) droop-based active power controller; (d)

reactive power controller.

been realized using two different approaches: (i) traditional

droop control based on the strong coupling of active power

and frequency; (ii) Virtual Inertia Emulation (VIE) through

replicating the swing equation [11], [12]. The two control

architectures can be proven mathematically equivalent under

certain steady-state conditions [3], whereas VIE offers overall

better behavior during frequency transients [8].

For Active Power Droop Control (APDC), the measured

active power signal is passed through a first-order LPF with

a cut-off frequency ωc. Subsequently, the active power droop

gain (Dp) regulates the output frequency (ωapc) based on the

mismatch between the filtered power measurement signal (p̃)

and the external setpoint (p∗), as follows:

ωapc = ω∗ +Dp(p
∗ − p̃) (12)

˙̃p = ωc(p− p̃) (13)

On the other hand, the VIE is based on a linearized form

of the conventional swing equation, representing the relation

between physical inertia and damping of a synchronous ma-

chine. Hence, the frequency can be expressed via a differential

equation of the form:

ω̇apc =
1

2H
(p∗ − p)
︸ ︷︷ ︸

pm−pe

−
1

2H
Kd(ωapc − ω∗)
︸ ︷︷ ︸

pd

(14)

where the mechanical (pm) and electrical (pe) power of a

synchronous machine are replaced by the active power setpoint

(p∗) and power output fed into the grid (p), respectively. The

damping term is incorporated through a feedback loop, with

a damping constant (Kd) being the feedback gain imposed on

the frequency mismatch, while a normalized inertia constant

(H) determines the rate-of-change-of frequency during tran-

sients. The block diagram implementation of the two control

approaches is presented in Fig. 2b-2c, with the corresponding

steady-state equivalence between the two APC parameters as

follows [3]:

H =
1

2ωcDp

, Kd =
1

Dp

(15)

Furthermore, the corresponding phase angle (θapc) of the

APC-based SRF is used as a reference angle for the (dq)-

transformation of the entire system, with exclusion of the PLL,

i.e.

θ̇apc = ωapcωb (16)

In case the converter is operating in an islanded mode, the

APC establishes the “grid” frequency, thus omitting the need

for a synchronization unit and simplifying the problem. In

other words, the grid-forming (g-form) VSC is modeled with

the PLL block simply passing through the nominal frequency

signal as a new APC setpoint (ω∗ = ωn), whereas in the grid-

feeding (g-feed) case the frequency setpoint is being actively

observed (ω∗ = ωpll).

D. Reactive Power Control

Analogous to the APC, the strong coupling of reactive

power and voltage enables a droop-based implementation

of reactive power control. The desired output voltage (v̂)

is computed as an adjustment of the voltage setpoint (v∗),

according to a mismatch in the reactive power:

v̂ = v∗ +Dq(q
∗ − q̃) (17)

˙̃q = ωc(q − q̃) (18)

with q, q̃ and q∗ denoting the actual, LPF and setpoint value

of the reactive power, respectively, and Dq being the reactive

power droop gain. The control block configuration is given in

Fig. 2d.

E. Virtual Impedance

The virtual impedance concept is increasingly used for

the control of power electronic systems, either embedded as

an additional degree of freedom for active stabilization and

disturbance rejection, or employed as a command reference

generator for the converters to provide ancillary services [13].

This paper incorporates the virtual impedance in order to split

the voltage reference into (dq)-components, before passing



it to the inner control loop. Despite maximizing the active

power output when set to zero, a non-zero q-component is

necessary to allow for “acceleration” and “deceleration” of the

virtual machine. Therefore, a minor cross-coupling of d- and

q-components is included via the resistive (rv) and inductive

(lv) elements. While the former is set to rv = 0 for simplicity,

the latter should be kept as small as possible, yielding the

respective d-axis and q-axis voltage components:

v̄d = v̂ − rvi
d
g + ωapclvi

q
g (19)

v̄q = −rvi
q
g + ωapclvi

d
g (20)

which are directly used as reference inputs for the decoupling

SRF voltage controller.

F. Inner Control Loop and Modulation

The computed references for voltage, frequency and align-

ment angle are passed to the inner control loop, as indicated

in Fig.1. However, a direct use of such signals for Pulse-

Width Modulation (PWM) raises problems regarding the lim-

itations and controlled saturation of the converter’s currents

and voltages [14]. These issues are conveniently resolved with

a cascaded inner control scheme where the initial reference

(v̄) is processed through a sequence of voltage and current

loops, yielding a more robust converter setpoint (v̄m). Such

approach increases the flexibility of protection strategies and

is commonly used in droop-controlled microgrids [7], [15].

1) SRF Voltage Control: The structure of the SRF voltage

controller follows the similar principles as the controllers

in [3], [14]:

īs = Kv
p (v̄ − eg) +Kv

i ξ + jωapccfeg +Ki
f ig (21)

ξ̇ = v̄ − eg (22)

where Kv
p and Kv

i are the proportional and integral gains of

the SRF voltage PI controller, and ξ is the integrator state.

Furthermore, a feed-forward signal of the measured currents

can be enabled or disabled by changing the gain Ki
f ∈ [0, 1].

The output current reference (īs) is then used as an input

setpoint to the current controller.

2) SRF Current Control: Similar to its voltage counterpart,

the configuration of the SRF current controller is based on a

PI control with decoupling terms:

v̄m = Ki
p(īs − is) +Ki

iγ + jωapclf is +Kv
feg (23)

γ̇ = īs − is (24)

with Ki
p, Ki

i and Kv
f being the respective controller gains, and

γ the integrator state. The generated output voltage reference

(v̄m) is used to determine the final modulation signal as

explained in the following subsection.

3) Pulse-Width Modulation: For the purpose of an actual

implementation of the VSC switching sequence, the voltage

reference signal (v̄m) from the current controller must be

processed and converted into the modulation index (m). This

can be achieved through means of instantaneous averaging

applied to the output voltage of the converter. Furthermore,

the time delay effect of PWM is neglected, which yields the

following expression:

mabc = (T pT c)
−1

mdq = (T pT c)
−1 v̄m

vdc
(25)

The inclusion of the DC voltage (vdc) enables the averaging

and ensures that the actual VSC output is close to the initial

reference. Additionally, it reduces the AC side sensitivity to

the oscillations of the DC voltage [3].

G. Synchronization and SRF Alignment

Since the entire control system is implemented in the SRF

defined by the APC, all states in the presented model rotate

with frequency ωapc. However, the same does not apply to the

states included in the PLL unit, as described in Section II-B.

Therefore, the two transformations have to be properly aligned.

This can be achieved by expressing the two SRFs respective

of the common reference vector, i.e. the measured output

voltage (eg), as presented in Fig. 3. By introducing the angular

speed (νapc, νpll) and phase angle (ϑapc, ϑpll) displacement

of the respective rotating frames, we can reformulate the

expressions in (9), (11) and (16) as:

νpll = ωn − ωg +Kpll
p êqg +Kpll

i ε (26)

ϑ̇pll = νpllωb (27)

ϑ̇apc = νapcωb (28)

where, assuming the notation xk ∈ {xpll, xapc}, we define

νk = ωk − ωg , ϑk = θk − θg (29)

Here, ωg and θg refer to the angular speed and position of the

grid voltage vector. Furthermore, the phase angle difference

between the two SRFs is equal to ∆ϑ = ϑapc − ϑpll, which

provides the transformation of the internal PLL vector êg into

an APC-based SRF:

êg = ege
−(ϑpll−ϑapc) (30)

Finally, the reformulation of êqg term in (10) concludes the

alignment, as all states are transformed into a uniform SRF.

ε̇ = edg sin (ϑapc − ϑpll) + eqg cos (ϑpll − ϑapc) (31)

α

β
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q
edg

eqg

eg

êg
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ϑapc

θpll

ϑpll

ωg

ωpll

ωapc

Fig. 3: Vector diagram representing the alignment of different

reference frames.



III. SMALL-SIGNAL MODELING

A full state-space model of the VSC control scheme can be

established by reducing the equations (3)-(31), which yields a

following 15th order state-space system:

x =
[

edqg , idqg , idqs , ξdq, γdq, ε, ϑapc, ϑpll, p̃, q̃
]T

(32)

u = [p∗, q∗, v∗, vg, ωn, ωg]
T

(33)

where x and u denote the state and input vectors, respectively.

For the virtual inertia emulation, the state p̃ is replaced

with νapc, as described in Section II-C. The input vector

includes the outer control loop setpoints (p∗, q∗, v∗, ωn), as

well as the voltage amplitude (vg) and frequency (ωg) of the

grid equivalent. Hence, the linearized small-signal state-space

model can be defined in the general form as:

∆ẋ = A∆x+B∆u (34)

where ∆ indicates a small-signal deviation around the lin-

earization point (x0, u0).

In order to validate the proposed control structure, a non-

linear model was developed in MATLAB Simulink, with the

use of a Simscape Power Systems library for the electrical

system design. Subsequently, the response to a 10% step

change in power setpoint was compared against the full DAE

and small-signal models. The results presented in Fig. 4 verify

the accuracy of the proposed mathematical formulation, with

the small-signal model having better initialization behavior due

to aforementioned linearization.

IV. RESULTS

A. Forming vs. Feeding: A Stability Study

The first stability study is conducted through eigenvalue

analysis of the proposed small-signal system in (34), with a

focus on different converter modes (g-form vs. g-feed) and

APC implementation (droop vs. VIE). The APC scheme plays

no role in stability of a g-form unit under initial steady-state

conditions, since the PLL is not active and the grid frequency

is established directly by the VSC. On the other hand, the VIE

control scheme in g-feed operation has the slowest response,

but provides the highest damping. This can be explained with

explicit terms for inertia and damping in (14). The root loci

spectrum for all possible configurations is presented in Fig. 5.
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0
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0.4

0.6
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p
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Fig. 4: Transient response of different developed models to a

step change in active power setpoint.
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Fig. 5: Root loci spectrum of interest for different converter

operation modes.

B. Bifurcation Analysis

We now investigate the impact of APC gains by varying

two different sets of parameters: the droop gains (Dp, Dq) of

APDC and the virtual inertia and damping constants (H,Kd)

in VIE. The stability maps depicted in Fig. 6 indicate that

under traditional droop parametrization of Dp ∈ [1%, 5%],
all VSC operation modes should preserve stability. However,

only the grid-forming converter possesses the capability of

meeting potentially higher power response requirements, e.g.

Dp > 10%. On the other hand, the VIE-based g-feed unit

has higher stability margins for the equivalent damping gains

(Kd < 10 p.u.), i.e. yields lower critical inertia constants (Ĥ).

This property, however, stands only for damping values

above 1.85 p.u. Similar findings are showcased in Fig. 7, where

the movement of critical eigenvalues (λ̂) under different virtual

inertia levels and unity damping has been observed. As system

inertia reduces below 50ms, the eigenvalues gradually move
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Fig. 6: Stability maps of different converter modes; the system

is stable within the shaded region: (a) stability map on the Dp-

Dq plane; (b) stability map on the H-Kd plane.
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to the right-hand side of the imaginary plane, resulting in

Ĥ = 40.6ms and Ĥ = 46.5ms for the g-form and g-feed

VSC, respectively.

C. Impact of the Grid Equivalent

In order to study the effect of grid strength on stability of a

grid-feeding converter, different Short Circuit Ratios (SCRs),

have been considered. The SCR is expressed as η = x−1
g ∈

[0, 20], and incorporated in the model by changing the grid

resistance and inductance, while preserving the transmission

system ratio Xg/Rg = 10. The critical SCRs (η̂) presented

in Fig. 8a confirm that VSCs connected to typical high-

voltage systems, usually described with η ≈ 3, are capable

of withstanding the traditional droop control gains of up to

5%. However, a faster provision of frequency reserves would

be possible only in a very stiff grid, closer to an infinite bus

(η > 15). On the other hand, having a VIE controller gives

operational flexibility, since such g-feed unit can operate even

in a very weak network (η < 0.1), as shown in Fig. 8b.
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Fig. 8: SCR influence on the stability of a g-feed unit under

different active power controllers: (a) APDC; (b) VIE.

V. CONCLUSION

In this paper, a small-signal stability analysis of converter

control modes in low-inertia power systems is investigated.

In particular, a detailed VSC control scheme is proposed in

a DAE form, and an eigenvalue analysis of the linearized

state-space system is performed. Both grid-forming and grid-

feeding concepts have been considered, together with different

active power controllers based on droop and VIE. It was

shown that the stability margins of proposed configurations

can vary significantly with respect to parameter sensitivity and

robustness. Furthermore, the strength of the grid equivalent

can impose constraints on the optimal tuning of converters,

especially in case of a droop-based grid-feeding unit. The

future work will focus on multi-converter systems and the

potential interactions between them, as well as the stability

in the presence of conventional synchronous machines.
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