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Abstract—This paper presents a novel virtual inertia controller
for converters in power systems with high share of renewable
resources. By combining the analytical study of system dynamics
and a Linear-Quadratic Regulator (LQR)-based optimization
technique, the optimal state feedback gain is determined, adapt-
ing the emulated inertia constant according to the frequency
disturbance in the system. The optimality is achieved through
trade-off between the critical frequency limits and the required
control effort, i.e. utilization of the internal energy storage.
The proposed controller is integrated into a state-of-the-art
converter control scheme and verified through EMT simulations.
The results show a significant improvement in the frequency
response compared to an open-loop system, while also preserving
drastically more DC-side energy than a non-adaptive controller.

Index Terms—linear-quadratic regulator (LQR), virtual inertia
emulation, voltage source converter, adaptive controller

I. INTRODUCTION

The power system inertia provided by the rotating masses

of large synchronous generators reduces as the penetration

of renewable energy sources, usually coupled to the grid

through fast-acting power inverters, increases [1], [2]. The

loss of rotational inertia can have devastating effects on

system dynamics, with large frequency deviations potentially

triggering undesirable events, such as load-shedding and large-

scale blackouts [3]. However, this study also shows that grid-

scale energy storage devices can be employed for providing

fast frequency support in isolated systems with high share

of renewables. A downside of this approach though is the

noise from the introduced harmonics, limited life cycle and

low round-trip efficiency of the respective storage units.

Another common control approach for grid-connected in-

verters is the synchronous machine emulation, which provides

a virtual inertia equivalent and “slows down” the transient

system dynamics [4]. While the sole design and implemen-

tation of virtual inertia is quite straightforward, it is usually

based on the assumption that the generator can produce or

absorb infinitely large power, whereas in reality it is limited by

its DC-side capacitor [5]. Hence, a distributed virtual inertia

approach through regulating the DC-link voltages of power
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converters was presented in [6], where the DC-link capacitors

are aggregated into an extremely large unit for frequency

support. The proposed method is implemented via a basic

proportional frequency controller which drastically improves

the overall system frequency response. However, it is only

tested on a simplistic system and does not take into account

the overall control effort, i.e. the value of the stored energy

used for frequency regulation.

The addition of a derivative control term for containing

excessive frequency excursions has been suggested in several

studies [7]–[9]. In [7], a Rate-of-Change-of-Frequency (Ro-

CoF) measurement contributes as an input to the traditional

droop-like primary frequency control of a wind turbine; [8]

proposes a droop controller in the form of a heuristic Ro-

CoF exponential function, while [9] suggests the respective

measurement as an input for an optimization-based online-

tuning of a virtual synchronous machine. Nonetheless, all of

the aforementioned techniques focus solely on the overall

frequency improvement and disregard the costs and energy

resources required for such regulation.

The goal of this paper is to derive a virtual inertia con-

troller that would adapt the inertia gain according to the

optimal trade-off between the transient frequency regulation

and the respective energy requirements. First, we analytically

study the system dynamics under the state feedback control

of inertia constant. Based on the analysis, we propose an

LQR-based adaptive inertia method that incorporates both the

cost of frequency violation and the required control effort.

Subsequently, the developed controller is implemented on a

single state-of-the-art converter model, and verified through

EMT simulations.

The remainder of the paper is structured as follows. In

Section II, the system dynamics are investigated, and the

respective frequency metrics under state feedback control are

analytically derived. Section III describes the LQR formulation

and optimal controller parametrization. Section IV showcases

the EMT simulation results, whereas Section V draws main

conclusions and discusses the outlook of the study.

II. ADAPTIVE VIRTUAL INERTIA PROPERTIES

A. System Dynamics

We consider a second-order system consisting of an emu-

lated swing equation and the turbine governor dynamics:
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Mω̇ = −Dω + q +∆P (1)

τ q̇ = −r−1ω − q (2)

where M and D are the normalized inertia and damping

constants, and ω is the frequency deviation; ∆P and q denote

the active power balance, i.e. a change in the drawn electric

power, and the variation of the mechanical turbine power,

respectively, while r and τ represent the droop gain and time

constant of the turbine dynamics. It should be noted that the

equations (1)-(2) are expressed in per-unit, and the ∆P term

is considered as a known system disturbance. In steady state,

the following holds:

ωss =
∆P

D + r−1
, qss = −r−1ωss (3)

From (1) and (2) we get the second-order differential equation

of ω:

ω̈ = −(
D

M
+

1

τ
)ω̇ − (

1

rτM
+

D

τM
)ω +

∆P

τM
+

∆Ṗ

M
= −aω̇ − bω + c∆P + cτ∆Ṗ

(4)

where a = D
M

+ 1
τ

, b = 1
τM

( 1
r
+D) and c = 1

τM
. In Laplace

s-domain the respective transfer function can be expressed as

follows:

H(s) =
ω(s)

∆P (s)
=

c

s2 + as+ b
+

cτs

s2 + as+ b
(5)

with the characteristic equation s2 + as + b = 0, and the

damping factor

ζ =
a

2
√
b
=

r
1
2 (M +Dτ)

2(Mτ +MτDr)
1
2

(6)

We assume the system to be underdamped, 0 < ζ < 1, which

results in the following inequality:

rM2 − (2τDr + 4τ)M + rτ2D2 < 0 (7)

In order to obtain a time domain expression of ω, we

consider ∆P to be a step change in the active power balance,

i.e. a step disturbance ∆P (s) = s−1 in s-domain. Hence,

a respective time domain solution of (4) can be computed

through the inverse Laplace transform of the following fre-

quency response:

ω(s) = H(s)∆P (s) =
c/s

s2 + as+ b
+

cτ

s2 + as+ b
= ω0(s) + sτω0(s)

(8)

Therefore, by introducing the notation ωn =
√
b and θ =

cos−1 ζ, in time domain we obtain

ω(t) = L−1(ω(s)) = ω0(t) + τ ω̇0(t) (9)

where ω0(t) and ω̇0(t) are given by:

ω0(t) = ωss(1−
1

sin θ
e− cos θωnt sin ((ωn sin θ)t+ θ)) (10)

ω̇0(t) =
ωssωn

sin θ
e− cos θωnt sin ((ωn sin θ)t) (11)

Since 0 < ζ < 1, the angle θ is bounded by θ ∈ (0, π
2 ).

Finally, adding up (10) and (11) yields

ω(t) = ωss(1−
1

sinφ
e− cos θωnt sin (ωn sin θt+ φ)) (12)

with φ satisfying the following conditions:

cosφ =
cos θ − τωn

β
(13)

sinφ =
sin θ

β
(14)

In (13)-(14) we define β =
√

(cos θ − τωn)2 + sin2 θ. It can

be shown that φ ∈ (θ, π).

Proof. Having in mind that τ > 0, let us observe the following

expression:

d(cosφ)

dτ
=

−ωnβ + ωnβ
−1(cos θ − τωn)

2

β2

=
ωn

β3
((cos θ − τωn)

2 − β2)

=
ωn

β3
(− sin2 θ) < 0

(15)

Since cosφ is continuous on τ , the respective boundaries are

determined as

−1 = lim
τ→+∞

cosφ(τ) < cosφ(τ) < lim
τ→0

cosφ(τ) = cos θ

which implies φ ∈ (θ, π). �

Having derived a mathematical formulation of frequency

response in time domain, we can now investigate the nadir

and maximum RoCoF in the open-loop by taking the first and

second derivative of ω(t) with respect to time:

ω̇(t) =
ωssωn

sinφ
e− cos θωnt sin ((ωn sin θ)t+ φ− θ) (16)

ω̈(t) = −ωssω
2
n

sinφ
e−ζωnt sin ((ωn sin θ)t+ φ− 2θ) (17)

The properties of frequency nadir are obtained from (16) by

observing ω̇(tp) = 0, which results in:

tp =
π + θ − φ

ωn sin θ
(18)

ωmax = ω(tp) = ωss(1 +
sin θ

sinφ
e−

ζ(π+θ−φ)
sin θ ) (19)

Similarly, the maximum RoCoF can be investigated by setting

ω̈(tm) = 0 in (17). However, the analysis is more complicated

and yields the following two solutions, depending on the

relationship between φ and θ:

|ω̇max| =







τ |ωss|ω2
n ≡ |∆P |

M
, φ ∈ [2θ, π)

|ωss|ωn
sin θ
sinφ

e−
cos θ(2θ−φ)

sin θ , φ ∈ (θ, 2θ)
(20)

whereas the time instance of occurrence is defined as:

tm =







0, φ ∈ [2θ, π)

2θ−φ
ωn sin θ

, φ ∈ (θ, 2θ)
(21)



Proof. Let us first observe the case φ ∈ [2θ, π), i.e. τ ∈
[ 1
2ζωn

,+∞). From (17) we derive:

tm =
2θ − φ+ π

ωn sin θ
(22)

ω̇(tm) = −ωssωn

sin θ

sinφ
e−

ζ(2θ−φ+π)
sin θ (23)

However, due to the exponential decay nature of ω̇(t), we need

to compare ω̇(tm) against ω̇(0) in order to determine ω̇max:

|ω̇(0)| = |ωss|ωn sin (φ− θ)

sinφ

>
|ωss|ωn sin θ

sinφ
e−ζωntm = |ω̇(tm)|

(24)

Therefore:

|ω̇max| = |ω̇(0)| = τ |ωss|ω2
n =

|∆P |
M

(25)

Now the assumption is φ ∈ (θ, 2θ), i.e. τ ∈ (0, 1
2ζωn

). This

leads to the following expression for tm:

tm =
2θ − φ

ωn sin θ
(26)

Again, we have to compare ω̇(tm) and ω̇(0):

|ω̇(0)| = |ωss|ωn sin (φ− θ)

sinφ
(27)

|ω̇(tm)| = |ωss|ωn sin θ

sinφ
e−

cos θ(2θ−φ)
sin θ (28)

which, due to the fact that |ωss|, ωn and sinφ are positive, is

equivalent to analyzing the expressions:

h1(φ) = sin(φ− θ) (29)

h2(φ) = sin θ e−
cos θ(2θ−φ)

sin θ (30)

Let us observe the nature and boundaries of h1 and h2:

h1(θ) = 0 < sin θ e− cos θ = h2(θ)

h1(2θ) = sin θ = h2(2θ) (31)

d(h2(φ)− h1(φ))

dφ
= cos θ e−

cos θ(2θ−φ)
sin θ − cos(φ− θ)

Since the last term in (31) is negative, it can be concluded

that h1(φ) < h2(φ), ∀φ ∈ (θ, 2θ), which further indicates

|ω̇(0)| < |ω̇(tm)|. Finally, we derive:

|ω̇max| = |ω̇(tm)| = |ωss|ωn

sin θ

sinφ
e−

cos θ(2θ−φ)
sin θ (32)

�

The respective frequency response properties from (18)-(19)

are depicted in Fig. 1. It is shown in (19) that the value of φ
determines the RoCoF characteristic of the system. However,

this can be simplified by combining the expression for a, ωn

and ζ as follows:

φ ≥ 2θ ⇐⇒ τ ≥ 1

2ζωn

⇐⇒ τ ≥ 1

a
⇐⇒ 1

τ
≤ a ⇐⇒ 1

τ
≤ D

M
+

1

τ

(33)

t

ω

|ωmax| = |ω(tp)|

tp

|ωss|

(a)

t

ω̇

|ω̇max| = |ω̇(0)|

|ω̇(tm)|

0 tm

0

(b)

t

ω̇

|ω̇max| = |ω̇(tm)|

tm

0

(c)

Fig. 1: Frequency response characteristic of the second-order

system: (a) frequency nadir; (b) maximum RoCoF for φ ∈
[2θ, π); (c) maximum RoCoF for φ ∈ (θ, 2θ);

which indicates that φ ∈ [2θ, π), ∀D,M > 0. Hence, the

maximum RoCoF of the investigated second-order system

occurs always at t = 0, and is determined simply by the

active power disturbance and provided inertia. This implies

that regulating inertia adaptively in the closed-loop could have

significant improvements on the overall frequency response.

B. Linearization and Closed-Loop Analysis

If we consider a constant step change disturbance ∆P ∀t ∈
[0+,+∞), then (4) is transformed into:

ω̈ = −(
D

M
+

1

τ
)ω̇ − (

1

rτM
+

D

τM
)ω +

∆P

τM
= −aω̇ − bω + c∆P

(34)

Defining the state-space and control input as x =
[
ω ω̇

]T

and u = M , respectively, (34) can be rewritten as follows:

[
ω̇
ω̈

]

=

[
0 I

−( 1
rτM

+ D
τM

) −( D
M

+ 1
τ
)

] [
ω
ω̇

]

+

[
0

∆P
τM

]

(35)

with the initial condition x(0) =
[
0 ω̇(0+)

]T
.



Let us now linearize the system in (35) around its post-

disturbance steady-state equilibrium point (x0, u0), where

x0 =
[

∆P
D+r−1 0

]T
and u0 = M0:

[
ω̇
ω̈

]

=

[
0 1

−( 1
rτM0

+ D
τM0

) −( D
M0

+ 1
τ
)

]

︸ ︷︷ ︸

A

[
ω
ω̇

]

+

[
0

−∆P
τM2

0

]

︸ ︷︷ ︸

B

∆M

=

[
0 1

−b∗ −a∗

] [
ω
ω̇

]

+

[
0
g

]

∆M (36)

Introducing the following state feedback control input depicted

in Fig. 2:

∆u = ∆M = M −M0 = −Kx = −
[
K1 K2

]
[
ω
ω̇

]

(37)

results in the closed-loop system of the form ẋ = Ax, with

the semi-simple matrix A defined as

A =

[

0 1
−( 1

rτM0
+ D

τM0
− ∆PK1

τM2
0
) −( D

M0
+ 1

τ
− ∆PK2

τM2
0
)

]

=

[
0 1

−b∗ − gK1 −a∗ − gK2

]

(38)

In order to find the solution to the aforementioned LTI system,

we diagonalize A as follows:

A =

[
1 1
λ1 λ2

] [
λ1 0
0 λ2

] [
1 1
λ1 λ2

]−1

(39)

where λ1 and λ2 are the eigenvalues of A satisfying:

λ2 + (a∗ + gK2)λ+ (b∗ + gK1) = 0 (40)

Therefore, the time-domain solution to the linearized closed-

loop system is given by x(t) = eAtx(0), i.e.

[
ω(t)
ω̇(t)

]

=

[
1 1
λ1 λ2

] [
eλ1t 0
0 eλ2t

] [
1 1
λ1 λ2

]−1 [
ω(0)
ω̇(0)

]

=
ω̇(0)

λ2 − λ1

[
−eλ1t + eλ2t

−λ1e
λ1t + λ2e

λ2t

]

, ∀λ1 6= λ2 (41)

For the case where λ1 = λ2, the above solution needs to

be modified by the Jordan normal form of matrix A instead

of diagonalization. However, we could always put the two

eigenvalues at different positions by turning the feedback

gains. Setting ω̇(tp) = 0 yields the frequency nadir properties:

tp =
ln(λ1/λ2)

λ2 − λ1
(42)

ωmax = ω(tp) = ω̇(0)
eλ2tp − eλ1tp

λ2 − λ1
(43)

Similarly, observing the expression ω̈(tm) = 0 yields:

tm =
ln(λ2

1/λ
2
2)

λ2 − λ1
(44)

ω̇(tm) = ω̇(0)
λ2e

λ2tm − λ1e
λ1tm

λ2 − λ1
︸ ︷︷ ︸

Kλ

(45)

Σ

K

ẋ = Ax+Bu

x ≡
[
ω
ω̇

]

∆u ≡ ∆M

K =
[
K1 K2

]

x

−

∆u

ur

Fig. 2: State feedback control of adaptive virtual inertia.

It can be shown that −1 < Kλ < 1, which indicates that the

maximum RoCoF of the closed-loop system would also occur

at t = 0, i.e. ω̇max = ω̇(0).

Proof. We observe two different cases, depending on the

nature of the eigenvalues λ1 and λ2:
Case 1: Matrix A has two negative real eigenvalues and

w.l.o.g. we assume λ1 < λ2 < 0. Since tm > 0 =⇒ eλ2tm >
eλ1tm , which implies λ2e

λ2tm < λ2e
λ1tm , and furthermore:

λ2e
λ2tm − λ1e

λ1tm

λ2 − λ1
︸ ︷︷ ︸

Kλ

<
λ2e

λ1tm − λ1e
λ1tm

λ2 − λ1
︸ ︷︷ ︸

eλ1tm

< 1 (46)

Secondly, −1 < Kλ is equivalent to the following statement:

−1 < Kλ ⇐⇒ λ1 − λ2 < λ2e
λ2tm − λ1e

λ1tm

⇐⇒ λ1 + λ1e
λ1tm < λ2 + λ2e

λ2tm

⇐⇒ f(λ1) < f(λ2)

(47)

where f(λ) = λ+λeλtm is a strictly increasing function ∀λ <
0, which further implies:

df(λ)

dλ
= 1 + (1 + λtm)eλtm > 0 (48)

Since f̈(λ) = 0 ⇐⇒ tmeλtm(2+λtm) = 0, we can compute

min(ḟ(λ)) = ḟ(−2t−1
m ) = 1 − e−2 > 0. Therefore, ḟ(λ) >

0, ∀λ < 0, which confirms the statement in (48) and proves

that −1 < Kλ.
Case 2: The eigenvalues of A are a pair of complex

conjugates and w.l.o.g. we assume λ1 = α+ jβ1 = cejθ1 and

λ2 = α+ jβ2 = cejθ2 , with α < 0, β1 = −β2 > 0, c > 0 and

θ1 = −θ2 ∈ (π2 , π). Hence, Kλ can be expressed as follows:

Kλ =
λ2e

λ2tm − λ1e
λ1tm

λ2 − λ1

=
ceαtm(ej(θ2+β2tm) − e−j(θ2+β2tm))

2jβ2

=
ceαtm sin (θ2 + β2tm)

β2

(49)

while tm can also be simplified accordingly:

tm =
ln

λ2
1

λ2
2

λ2 − λ1
=

θ1 − θ2 + 2kπ

β2
, k ∈ Z (50)

Therefore, the first peak value of ω̇(t) for t ∈ [0,+∞) is

attained at k = 1. Substituting the respective value of tm in

(49) yields:

Kλ =
eαtm sin θ1

β2/c
=

eαtm sin θ1
sin(θ1 − π)

= −eαtm ∈ (−1, 0) (51)



which concludes the proof. �

Finally, combining (25) and (37) results in:

ω̇max =
∆P

M(0)
=

∆P

M0 −K2ω̇max

(52)

Hence, the maximum RoCoF of the closed-loop system is

solely dependent on the active power disturbance, equilibrium

virtual inertia and the RoCoF feedback gain of our controller,

as follows:

ω̇max =
M0 − (M2

0 − 4K2∆P )
1
2

2K2
(53)

III. LQR-BASED CONTROLLER DESIGN

A. Optimization Problem

Having derived a mathematical model of the inertia emu-

lation controller, we focus on tuning it. The goal is to obtain

feedback gains (K1,K2) such that the converter provides

an optimal contribution to frequency regulation, while also

considering the “costs” of DC-side utilization. In order to

achieve such trade-off, a following optimization problem is

proposed:

min
ω,ω̇,∆M

∫ ∞

0

(
ωTQ1ω + ω̇TQ2ω̇ +∆MTR∆M

)
dt (54a)

s.t

[
ω̇
ω̈

]

= A

[
ω
ω̇

]

+B∆M (54b)

∆M = −
[
K1 K2

]

︸ ︷︷ ︸

K

[
ω
ω̇

]

(54c)

which penalizes three quadratic objectives: frequency devia-

tion from nominal (ω), RoCoF (ω̇), and control effort (∆u),

which correlates to the amount of additionally provided virtual

inertia (∆M ); Q1, Q2 and R denote the respective penalty

factors. The optimization constraints (54b)-(54c) are defined

through linearized system dynamics described in Section II-B.

The presented formulation in (54) represents a Linear-

Quadratic Regulator (LQR). Therefore, one can obtain the

optimal control feedback gain that minimizes the objective

function in (54a) as K∗ = R−1BTP , where P is the solution

of the following algebraic Riccati equation:

ATP + PA− PBR−1BTP +Q = 0 (55)

and Q = diag(Q1, Q2). The expression in (55) implies that

the selection of cost factors Q and R completely determines

the optimal controller gain, thus highlighting the importance

of the controller parametrization discussed in the subsequent

section.

B. Parametrization and Implementation

One of the most common (initial) LQR tuning approaches

is to consider all objective costs equally [10], i.e. to select the

respective weights such that J1 = J2 = J3:

J1 = Q1x
2
max ≡ Q1(ωmax)

2 (56)

J2 = Q2ẋ
2
max ≡ Q2(ω̇max)

2 (57)

J3 = R∆u2
max ≡ R(∆Mmax)

2 (58)

TABLE I: Controller Parameters

Parameter Symbol Value

Nominal frequency fn 50Hz

LPF cut-off frequency fc 25Hz

Active droop gain r 0.04 p.u.

Inertia constant M0 1 s

Damping constant D 50 p.u.

Turbine time constant τ 3 s

This is usually achieved by fixing one penalty factor, e.g. R =
1 in our case, and adjusting the remaining ones accordingly:

Q1 = R

(
∆Mmax

ωmax

)2

(59)

Q2 = R

(
∆Mmax

ω̇max

)2

(60)

The ENTSO-E report on frequency stability evaluation criteria

for low inertia systems [11] states the following limits for both

ordinary and exceptional contingencies: f ∈ [49.8, 50.2]Hz;

|df/dt| ∈ [0, 2]Hz/s. Hence, the corresponding LQR thresh-

olds are set to ωmax = 0.004 p.u. and ω̇max = 0.04 p.u.

Furthermore, we make an assumption that the respective

frequency excursions correlate to a virtual inertia increase of

50%, i.e. ∆Mmax = 0.5M0. The employed controller model is

obtained from the following equivalence between an emulated

virtual inertia and a standard droop control [12]:

M0 =
1

rfc
, D =

1

r
(61)

where fc denotes a low-pass filter cut-off frequency. All

parameters are given in Table I, whereas the implemented

control block structure is depicted in Fig. 3. It showcases

the plug’n’play properties of the adaptive controller, as it can

easily be adopted into an existing virtual inertia structure, e.g.

a virtual synchronous machine control of doubly-fed induction

generators. It should be noted that the adaptive inertia constant

gain in Fig. 3 is of the form M = M0 +∆M .

IV. RESULTS

In order to qualitatively verify the proposed adaptive ap-

proach, the virtual inertia controller has been incorporated into

∆P

fn

1
M

K̂

D

1
s

f

ω

−

−

∆M

Fig. 3: Proposed virtual inertia control design (K̂ = −K); the

components of the adaptive controller are colored differently.



a state-of-the-art converter control scheme [13]. The modeling

and EMT simulations have been conducted in MATLAB

Simulink and Simscape Power Systems platforms, with a focus

on an islanded inverter unit supplying a purely resistive load.

We investigate the system frequency response under a sudden

step-change of 20% in the active load power, interpreted as

∆P = −0.2 p.u. in (1).

For the purpose of this study, three different control tech-

niques have been employed: (i) a traditional virtual inertia

model with a constant inertia term (M1 = M0); (ii) an LQR-

based adaptive inertia controller (M2 = M0 + ∆M ); and

(iii) a non-adaptive controller that changes inertia constant

in a step-wise fashion at the instance of load change; the

amount of provided inertia should vary between the maximum

values of the previous two controllers, i.e. Mmin
3 = M0 and

Mmax
3 = Mmax

2 .

The results shown in Fig. 4a indicate that the feedback

control greatly improves the frequency response, as both

adaptive and non-adaptive approach significantly reduce the

frequency nadir (≈ 10%). Due to an explicit step function

and immediate deployment of additional inertia, the frequency

excursion in case of a non-adaptive controller is slightly lower

than for the LQR-based model. However, it is achieved at the

cost of overall slower system dynamics, which leads to an

increase in steady-state convergence time. This implies that

the higher inertia is needed only within a very short window

around the instance of fault occurrence. Furthermore, another

downside of a non-adaptive approach is a drastically higher

DC-side energy consumption, as depicted in Fig. 4b.
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Fig. 4: System response under different virtual inertia con-

trollers: (a) frequency deviation; (b) emulated inertia constant.

V. CONCLUSION

This paper introduces a novel distributed virtual inertia

concept for converters in power systems with high share

of renewable resources. The system dynamics under such

control design have been thoroughly investigated, and analytic

formulation of frequency and RoCoF in time domain were

derived. Subsequently, the expressions for frequency nadir and

maximum RoCoF were obtained, proving an explicit impact

of the proposed controller on the respective system metrics.

An LQR-based optimal feedback controller was proposed

to adaptively adjust the emulated inertia constant according to

the frequency disturbance in the system, while simultaneously

preserving a trade-off between the critical frequency limits

and the required control effort. The proposed approach was

incorporated into a detailed state-of-the-art control scheme and

verified on an individual converter unit. The simulation results

show a drastic improvement in frequency response compared

to an open-loop system, while also preserving significantly

more DC-side energy than a non-adaptive controller. The

future work will focus on the impact of adaptive damping

control, the analysis of optimal LQR cost factors, as well as

the extension into a multi-inverter case.
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