
Data-driven Control Design Schemes in Active

Distribution Grids: Capabilities and Challenges

Stavros Karagiannopoulos∗‡, Roel Dobbe‡, Petros Aristidou§, Duncan Callaway‡, Gabriela Hug∗

∗ EEH - Power Systems Laboratory, ETH Zurich, Physikstrasse 3, 8092 Zurich, Switzerland
‡ Department of Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, USA
§ School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

Emails: {karagiannopoulos, hug}@eeh.ee.ethz.ch, {dobbe, dcal}@berkeley.edu, p.aristidou@leeds.ac.uk

Abstract—Today, system operators rely on local control of
distributed energy resources (DERs), such as photovoltaic units,
wind turbines and batteries, to increase operational flexibility.
These schemes offer a communication-free, robust, cheap, but
rather sub-optimal solution and do not fully exploit the DER
capabilities. The operational flexibility of active distribution net-
works can be greatly enhanced by the optimal control of DERs.
However, it usually requires remote monitoring and communi-
cation infrastructure, which current distribution networks lack
due to the high cost and complexity. In this paper, we investigate
data-driven control algorithms that use historical data, advanced
off-line optimization techniques, and machine learning methods,
to design local controls that emulate the optimal behavior without
the use of any communication. We elaborate on the suitability of
various schemes based on different local features, we investigate
safety challenges arising from data-driven control schemes, and
we show the performance of the optimized local controls on a
three-phase, unbalanced, low-voltage, distribution network.

Index Terms—optimal control, data-driven control design,
active distribution networks, OPF, machine learning

I. INTRODUCTION

Distribution systems are undergoing a tremendous transfor-

mation due to the introduction of large shares of Distributed

Generators (DGs), mainly renewables. Although DGs bring

some uncertainties in distribution grids, they can provide

significant operational flexibility, amplifying the role of Distri-

bution Networks (DNs) [1]. Their ability is further enhanced

when combined with other Distributed Energy Resources

(DERs), such as batteries and flexible loads.

The control of DERs is vital to ensure a secure, reliable

and cost-effective DN operation. A first option is centralized

schemes that require monitoring and communication infras-

tructure and usually rely on optimization methods. These

schemes have become popular due to theoretical develop-

ments in the nonlinear AC power flow [2] and advances in

computational power that allow for the real-time solution of

such problems. Several researchers have proposed system-

wide optimal operation methods by coordinated control of

DERs, e.g. [3], [4]. Another option is local control schemes,

e.g. [5], that rely only on local information to modify the DER

behavior. They are simple, robust, communication-free and

are already embedded in several grid codes. However, these

methods usually employ a one-size-fits-all approach, where the

same control parameters are employed in all DNs and types

of DERs. Finally, distributed approaches, e.g. [6], use limited

communication between different DERs to coordinate them

and achieve a close-to-optimal operation.

In this paper, we investigate data-driven control design

methods that have gained a lot of attention lately. Such meth-

ods are hybrid as the controllers are ”trained” using offline

centralized approaches, but the derived local controls can be

used when no communication infrastructure is available [7],

[7]–[12]. Reference [7] uses non-linear control policies to

derive reactive power injections of the inverter-based DGs,

while in [8], multiple linear regression is used in an open-

loop fashion to calculate a function for each inverter that

maps its local historical data to pre-calculated optimal reactive

power injections. However, in both works only reactive power

control is considered, neglecting possible combinations with

other available controls, and a balanced operation is assumed.

Reference [9] considered reactive control and active power

curtailment, while [10], [12] extended the available mea-

sures to controllable loads and storage systems. Furthermore,

while [8], [11] design local, open-loop controllers, [9], [10],

[12] employ a feedback, closed-loop control scheme.

The common first step of these data-driven methods is

to parse historical generation and consumption data with

an offline centralized optimization algorithm that includes a

representative model of the DN. This step allows to com-

pute optimal DER setpoints for different historical operating

conditions, under specific objectives, such as system losses

minimization [9], [10] or reference voltage tracking [8], [11].

The solution also ensures system security and power quality

by including the appropriate constraints in the optimization

problem. Finally, the system uncertainties can also be taken

into account [10] and the three-phase DNs can be assumed to

be balanced [7]–[9], [11] or unbalanced [10], [11].

The second step uses the obtained optimal setpoints from

the first step to design local DER controls for the real-time DN

operation. The key idea lies on the derivation of simple and

efficient optimized local controls that can mimic the behaviour

of centralized optimization-based schemes without the need of

any communication infrastructure.

This paper extends the authors’ previous work in [8]–[13].

First, it presents and compares the state-of-the-art data-driven

local control schemes based on the different local inputs they

rely on. Then, it proposes an extension to an existing scheme

to account for active power curtailment, and a new scheme



combining various local inputs. Finally, inspired by [14], it

is the first paper, to the best of the authors’ knowledge, that

comments on artificial intelligence (AI) safety issues, arising

from data-driven control design schemes in power systems.

More specifically, the contributions of this paper are:

• An extension of the multiple-linear regression model

presented in [8] to account for active power curtailment

using a classification stage.

• The proposal of a hybrid scheme that combines different

features of the investigated state-of-the-art data-driven

control schemes.

• A comparison of existing and new methods, highlighting

their strengths under normal and their behaviour under

“unpredicted” operating conditions.

The remainder of the paper is organized as follows. Sec-

tion II presents the mathematical formulation of the centralized

BFS-OPF to obtain an AC feasible solution considering the

modeling of various active measures. Section III describes

some of the existing data-driven local control design schemes,

while Section IV introduces the considered case study and the

simulation results. Finally, conclusions are drawn in Section V.

II. STAGE I - CENTRALIZED OFFLINE OPF SCHEME

The goal of the first stage is to parse the available data

that capture different operating conditions using an OPF-type

scheme and derive the optimal DER setpoints. The latter are

then used in Stage II to design the local controllers. It should

be noted that the centralized scheme is used offline based on

historical data gathered from low-cost monitoring devices, or

typical values from literature when some parts are missing

or noisy. That is, in real-time operation, we do not require

monitoring and communication infrastructure.

Several centralized schemes can be used on the historical

data to derive the optimal DER setpoints. Some of them use the

non-convex non-linear AC power flows in an OPF framework

with local solvers [4], linear approximations of the AC power

flows [6] and convex relaxations [2]. Since this scheme is

applied on a large number of scenarios, the computational

efficiency and the feasibility guarantees with respect to the

exact AC power flow model are of utmost importance.

In this work, we use an OPF framework derived

from [3], [13], [15] that integrates a backward-forward sweep

(BFS) [16] into the optimization problem. A high performance

is achieved by exploiting the radial or weakly meshed distribu-

tion network topology, while the AC feasibility is guaranteed

by performing an exact power flow calculation after each

OPF iteration. The framework is briefly described below but

the interested reader can find more details about a chance

constrained OPF version in [17] and its three-phase extension

in [10], [15]. However, it is important to reiterate that any

other suitable OPF formulation for DNs can be used to derive

the optimal DER setpoints.

A. OPF formulation

The objective of the operator is to guarantee a safe grid

operation minimizing the system losses and its operating costs.

The cost of DER control is based on the curtailment of active

energy and provision of reactive power support by DGs and

the objective function is evaluated by summing the cost of

DER control over all network nodes Nb, branches Nbr and

the entire time horizon NOPF ,

min
u

NOPF
∑

t=1

∑

z∈{a,b,c}

{ Nb
∑

j=1

(

CP ·Pc,j,z,t+CQ ·Qctrl,j,z,t

)

+

Nbr
∑

i=1

CP ·Ploss,i,z,t

}

·∆t

(1)

where u is the vector of the available active control measures

and ∆t is the length of each time period. The curtailed power

of the DGs connected at phase z, at node j and time t is

given by Pc,j,z,t = Pmax
g,j,z,t−Pg,j,z,t, where Pmax

g,j,z,t is the maximum

available active power and Pg,j,z,t the active power injection

of the DGs. The use of reactive power support Qctrl,j,z,t =
|Qg,j,z,t| for each DG connected to phase z of node j and

time t is also minimized; Qg,j,z,t represents the DG reactive

power injection or absorption. The coefficients CP and CQ

represent, respectively, the DG cost of curtailing active power

and providing reactive power support (DG opportunity cost or

contractual agreement). We set CQ ≪ CP, which prioritizes the

use of reactive power control over active power curtailment.

We further calculate the total losses by using the difference

between input and output power in each phase [18]. Thus,

Ploss,i,z,t = Re(|Sif ,z,t+Sit,z,t|), where Sif ,z,t and Sit,z,t represent

the apparent power flowing into branch i from each end; jf
and jt are the sending and receiving ends of the branch.

The power injections at every node j, phase z and time step

t are given by

Pinj,j,z,t = Pg,j,z,t − Pl,j,z,t, (2a)

Qinj,j,z,t = Qg,j,z,t − Pl,j,z,t · tan(φload), (2b)

where Pl,j,z,t and Pl,j,z,t · tan(φload) are active and reactive node

demands of constant power type, with cos(φload) being the

power factor of the load.

A single iteration of the BFS power flow problem is con-

sidered to represent the power flow constraints. That is: Ibr,t =

BIBC ·
(

(Pinj,j,z,t+jQinj,j,z,t)
∗

V̄ ∗

j,z,t

)

and Vt = Vslack +BCBV · Ibr,t,

where V̄ ∗
j,z,t is the voltage of phase z, at node j at time t,

∗ indicates the complex conjugate and the bar indicates that

the value from the previous iteration is used (the interested

reader is referred to [10] for more details); Ibr,t is the vector

of the three-phase branch flow currents; and, BIBC (Bus

Injection to Branch Current) is a matrix with ones and zeros,

capturing the three-phase topology of the DN (including any

single-phase laterals); ∆Vt is the vector of voltage drops over

all branches and phases; BCBV (Branch Current to Bus

Voltage) is a matrix with the complex impedance of the lines

as elements (including mutual coupling); Vslack is the three-

phase voltage in per unit at the slack bus (here assumed to

be {1<0◦, 1<−120◦, 1<120◦}). Thus, the constraint for the

current magnitude for all branches i and phase z at time t is

|Ibr,i,t| ≤ Ii,max, (3)

where Ii,max is the maximum thermal limit of the three phases.

For the voltage magnitude constraint, we follow [15] and



rotate the three voltage phases {a, b, c} by R = {1<0◦, 1<
120◦, 1<−120◦} to avoid the non-convex Vmin ≤ |Vj,z,t| ≤
Vmax constraints yielding

|RVj,z,t| ≤ Vmax, Re {RVj,z,t} ≥ Vmin. (4)

Finally, the limits of the inverter-based PVs are given by

Pmin
g,j,z,t ≤ Pg,j,z,t ≤ Pmax

g,j,z,t, (5a)

Q2
g,j,z,t ≤ (Smax

inv,j )
2 − P 2

g,j,z,t, (5b)

where Pmin
g,j,t , Pmax

g,j,t , are the upper and lower limits for active

DG power, and Smax
inv,j is the jth inverter’s capacity.

III. STAGE II - DATA-DRIVEN LOCAL CONTROL DESIGN

In this section, we describe the mathematical models of

the examined local data-driven control schemes. One key

characteristic of these methods is the existence of a feedback in

the control method. Open-loop schemes do not use feedback,

i.e. the response of the controllers is based only on local mea-

surements, and the output has no effect on the controller input

variable. These schemes are typically stable, and simple to

implement. On the contrary, in closed-loop schemes, the output

of the controller has an impact on the local measurements and

thus influences the controller’s input through a feedback term.

These schemes are generally more complex to analyze in terms

of stability. However, they can be more robust in situations that

are far from the ones in the training dataset.

The closed-loop schemes considered in this work use the

voltage magnitude as a local feature to control active and

reactive power results. Although voltage is a local feature,

it carries information from the whole network due to the

physics of system. Thus, we can design controllers that can

perform reasonably well, even when the real-time conditions

are ”far” from those in the training dataset. This is important

in machine learning systems to avoid accidents, defined in [14]

as “unintended and harmful behavior that may emerge from

poor design of real-world AI systems”.

Another key characteristic of the different methods is the

number and type of local measurements they use. They can

rely only on one feature, e.g. local voltage [9], or on a set

of measurements, such as local demand, generation and maxi-

mum capacities [11]. In the latter case, the set of measurements

can be selected to better map the OPF setpoints into a model.

In this paper, we compare 4 methods, 2 open-loop and 2
closed-loop. In addition, we combine the best of both worlds

by selecting and using multiple measurements following the

methodology of [11], while introducing the voltage in a closed-

loop manner, as in [9]. In this way, the controllers’ behavior

is close to the optimal and can contribute to secure operation

even in unseen conditions.

For all schemes, the real-time response of the jth inverter-

based DER (j ∈ [1, 2, ..., NJ]) is derived by NOPF optimal

setpoints (t ∈ [1, 2, ..., NOPF]) in terms of reactive power

control q
(j)
t and active power curtailment c

(j)
t from the off -

line calculations. The main goal is to derive models which

will mimic the optimal setpoints using only local input mea-

surements (features). The feature matrix Φ
(j) ∈ R

NOPF x NK

contains as columns the NOPF observations of the kth input

measurement φ
(j)

k ∈ R
NK , i.e.

Φ
(j) =



φ
(j)
1 φ

(j)
2 . . . φ

(j)
NK



 . (6)

For clarity reasons, we omit the subscripts of the phase z for

the rest of the section.

A. Local open-loop control

1) O1: The first open-loop local scheme is implemented

in several European countries, e.g. Germany [19]. Although it

is not designed using a data-driven approach, it will be used

as the reference. According to this scheme, the DGs have to

adjust their power factor as a function of the generation.

Thus, the only feature used is active power generation

Φ
(j)
1
= φ

(j)
1,t = Pg,j,t. The relations giving the per unit real-time

reactive power and active power curtailment are

q̃t = −tan(acos(1− 0.1 ·max(0, Pg,j,t − 0.5))), (7a)

c̃t = 0. (7b)

2) O2: This is an extension of [8] which is based

on multiple regression to account also for Active Power

Curtailment (APC). However, since APC is rarely needed, i.e.

only when Reactive Power Control (RPC) is not adequate

to satisfy the network constraints, we propose two stages

for active power curtailment: first a classification method is

used to identify the requirement for curtailment, and then a

regression model to predict the actual value of APC.

As base features for the reactive power control we follow [8]

and use the net active power demand φ
(j)
2,t = Pg,j,t − Pl,j,t,

the reactive power demand φ
(j)
3,t = Ql,j,t, and the maximum

reactive power capability of the inverter φ
(j)
4,t = Qmax

g,j,t . We also

consider combinations of these features, i.e. φ
(j)
5,t = φ

(j)
2,t · φ

(j)
3,t

and φ
(j)
6,t = (φ(j)

2,t)
2. Finally, the feature matrix is given by

Φ
(j)
2

= [φ(j)
2,t, φ

(j)
3,t, φ

(j)
4,t, φ

(j)
5,t]

T . Using the least squares method,

the local model for reactive power control is derived by solving

min
α

∑

t∈NOPF

(q(j)
t − q̃

(j)
t )2, (8a)

q̃
(j)
t = α

(j)
0 +

∑

k⊂K

α
(j)

k ·Φ(j)
2
, (8b)

where α
(j)

k are the k+1 regression coefficients of the jth unit

for the k ⊂ NK features.

The model for the active power control consists of two steps.

First, the classifier function yc = sign(
〈

w,Φ
(j)
3

〉

+ b) that

identifies if active power curtailment will be used (yc ∈ {0, 1})

is found by solving the support vector machine problem

min
w,b,ξ

1

2
wTw + C

NOPF
∑

t=1

(ξ + ξ∗) (9a)

subject to

yc −
〈

w,Φ3

〉

− b ≤ ǫ+ ξ, ∀ (Φ3, yc) (9b)
〈

w,Φ3

〉

+ b− yc ≤ ǫ+ ξ∗, ∀ (Φ3, yc) (9c)

ξ ≥ 0, ξ∗ ≥ 0. (9d)



where Φ
(j)
3

= [φ(j)
1,t, φ

(j)
7,t]

T is the features matrix for the

classification stage with φ
(j)
7,t = Pl,j,t; the constant C penalizes

the predictions outside the region defined by ǫ, and the slack

variables ξ are used to allow for prediction errors. Finally, we

try different kernel functions, i.e. linear, polynomial, Gaussian,

and we keep the one with the lowest overall out-of-sample

error through a 5-fold cross validation process.

Similar to the reactive case, the local model for active power

curtailment is derived by solving

min
α̃

∑

t∈NOPF

(c(j)
t − c̃

(j)
t )2, (10a)

c̃
(j)
t = α̃

(j)
0 +

∑

k⊂K

α̃
(j)

k ·Φ(j)
4
. (10b)

where Φ
(j)
4
= Φ

(j)
3

, and α̃
(j)

k are the k+1 regression coefficients

of the jth unit for the k ⊂ NK features.

B. Local closed-loop control

Inverter-based volt-var control drives voltages to desired

values by establishing a relation between the measured voltage

magnitude and reactive power injections. Modern grid codes

allow volt-var control in distribution systems [20]. However,

the same static curve is used by all inverters of similar size

irrespective of their location and grid challenges. For this

reason, reference [9] proposed a data driven approach to derive

a different volt-var characteristic curve for each inverter, based

on its location and the system-wide challenges.

1) C1: Following [10], we use segmented-regression to

derive APC and RPC piece-wise linear curves, optimizing also

the placement of the break-points. These curves are similar

to the ones used today in industry and grid codes. However,

in contrast to existing standards, the proposed characteristic

curves might have an arbitrarily large number of piece-wise

linear segments and are optimized for each individual DG,

based on the location of the DGs and the DN challenges.

Obtaining the optimal break-points and the slope coeffi-

cients is a non-linear and non-differentiable problem. Thus,

following [10] and inspired by [21], we iteratively derive the

location of the break-points while solving a residual sum-of-

squares (RSS) optimization problem for the slope coefficients.

The procedure is summarized below and interested readers are

referred to [10] for further details.

First, we define the number of break-points ns (k̄ ∈
{1, 2, ..., ns}), initialize them, and solve the residual sum of

squares problem

RSSī := min
x̃0,β,s,γ

∑

t∈NOPF

Pg,j,t · (xt − x̃t)
2 +

ns
∑

k̄=1

γ2
k̄

subject to

x̃t = x̃0 +β0 · Φ(j)

5
+

ns∑

k̄=1

βk̄ · (Φ(j)

5
− s

j

k̄
) · I(Φ(j)

5
>s

j

k̄
) −

ns∑

k̄=1

γk̄ · I(Φ(j)

5
>s

j

k̄
)

Monotonicity and slope constraints.

As input we use the voltage vector φ
(j)
8,t = [|Vj,t|] with Φ

(j)
5
=

[φ(j)
8,t]. We fit the linear model based on the known breakpoints

sī
k̄
, ∀k̄ = 1, . . . , ns at the current iteration ī, the left slope

β0 and difference-in-slopes βk̄. The indicator function I(·)

ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ ϭϬ ϭϭ

ϭϮ ϭϳ ϭϵ

ϭϯ

ϭϰ ϭϱ ϭϲ

ϭϴLV

Ă͕ď͕Đ

Fig. 1. Cigre LV grid.

becomes one when the inside statement is true. Finally, x̃0

is the model intercept and γ a parameter which updates the

location of the breakpoints towards the optimal one. Then, we

update the breakpoints sī+1
k̄

= γk̄

βk̄
+ sī

k̄
and iteration index

ī = ī + 1, repeating the procedure until the RSS does not

change between two iterations.

The same method is used both for the APC and RPC curves,

using respectively the PV optimal active and reactive setpoints

from the OPF in Section II.

2) C2: This scheme extends the model presented in

Section III-A2 to account also for local voltages, resulting

in a feedback control scheme. More specifically, the updated

feature matrices are Φ
(j)
6
= [Φ(j)

2
, φ

(j)
8,t]

T , Φ
(j)
7
= [Φ(j)

3
, φ

(j)
8 ]

T and

Φ
(j)
8

= [Φ(j)
4
, φ

(j)
8 ]

T and are used in (8), (9) and (10) to derive

the regression coefficients for this dynamic control scheme.

IV. CASE STUDY - RESULTS

A. Network description - Case study setup

To demonstrate the performance of the four methods, we use

the benchmark radial residential LV grid presented in [22] and

shown in Fig. 1. The load and PV panels are distributed to the

three phases unevenly, resulting in unbalanced conditions. The

total load, taken from [22], is shared 25%-60%-15% among

the three phases. The installed PV capacity, is set to SPV
rated =

150% of the total maximum load of the entire feeder to the

PV nodes = [3, 5, 7, 10, 12, 16, 17, 18, 19], and is shared 25%-

25%-50% among the three phases.

In the design stage, we use the algorithm in Section II to

process a 30-day summer dataset with forecasts of load and

PV production, and generate the optimal DER setpoints. The

operational costs of the centralized problem are assumed to

be cP = 0.3CHF
kWh

and cQ = 0.01 · cP. From the optimal DER

data, we derive the three data-driven schemes (O1, C1, C2) as

described in Section III. Then, we evaluate their performance,

and compare it to O1 and the optimal (OPF-based), using data

from another summer month. The implementation was done

in MATLAB using YALMIP [23] as the modeling layer and

Gurobi [24] as the solver. The results were obtained on an

Intel Core i7-2600 CPU and 16 GB of RAM.

B. Derived local control schemes

1) Local open-loop control:

a) O1: Fig. 2 shows the cosφ = f(P ) characteristic

curve defined in [19]. Larger units require more reactive power

absorption when the DG injects above 0.5 p.u.
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b) O2: Figure 3 shows the boundaries for APC

activation. As it is expected, PV generation above a certain

threshold, i.e. φ19
1 ≈ 0.8 p.u. in this case, would lead to

power quality issues, e.g. overvoltages or thermal overloads.

However, at high (low) levels of local load (φ19
7 ), the boundary

threshold value increases (decreases), since more (less) active

power can be consumed by the local load.

2) Local closed-loop control:

a) C1: Figure 4 presents the local volt-var character-

istic curves derived according to Section III-B1 of all PV units

in phase C. Node 3 injects reactive power to optimize losses,

while the remaining nodes absorb reactive power at voltages

smaller than the maximum acceptable value of 1.04 p.u..

b) C2: As described in Section III-A2, regression

models are calculated for each DER unit using the feature-

matrix Φ2 for the open-loop O2 and Φ6 for the closed-

loop C2 scheme, respectively. Table I shows the dominant

features for both cases, for all phases at Node 3 (close to

the substation) and at Node 19 (at the end of the feeder).

In contrast to [11], here the behavior of the DERs is based

mostly on the inverter maximum capacity (φ4). Phases a

and b do not face overvoltage or overloading challenges, and

thus, they show a capacitive behavior injecting reactive power

to optimize losses. On the other hand, Phase c, hosting the

biggest share of PV units, shows inductive behavior at hours

with high solar radiation to reduce voltages.

C. Method Comparison

In this section, we investigate the ability of open- and

closed-loop local schemes to emulate the centralized behavior.

First, we consider operating conditions similar to the training

dataset. Second, we explore the robustness of the schemes

Fig. 3. Active power curtailment (APC) classification regions for the real -
time response of the DER based on local load and PV generation.
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Fig. 4. Individual local characteristic curves for reactive power control of the
PV units at phase C.

TABLE I
NORMALIZED COEFFICIENT OF THE DOMINANT FEATURE AT NODE 19.

Dominant Feature
O2 C2

Node 3 Node 19 Node 3 Node 19

Phase a φ4 φ2 φ4 φ8

Phase b φ4 φ2 φ4 φ4

Phase c φ2 φ4 φ4 φ4

when the given inputs are significantly different from the

training sets, providing some insights on a safety issue of AI-

based control methods.

1) Expected operating conditions: Table II summarizes

the results in terms of losses, highest voltage and thermal load-

ing, and the needed active power curtailment from applying

all methods in real-time operation for a period of one summer

month (different from the one used in the training stage). As

can be seen, the OPF satisfies all security constraints. Method

O1 (standard industry practice) results in higher maximum

loading due to increased needs for reactive power by the

PV units, without solving the overvoltage issue. Methods

O2, C1 and C2 mitigate adequately the power quality issues

with marginal violations which are acceptable by grid codes,

while being capable of mimicking satisfactorily the OPF-based

control without the need of communication. This can be seen

also in Fig. 5 that shows the voltage magnitude evolution of

Node 19, the worst in terms of maximum voltage node.

2) Robustness to different conditions: Here we use the

same seasonal characteristics, but the network has changed by

installing a new PV unit, or connecting an additional load.

These conditions were not seen in the training data, and the

focus here is to assess how the controllers will behave under

an unseen setup without re-training. In order to examine the
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Fig. 5. Monthly voltage magnitude evolution at Node 19, phase C.



TABLE II
SUMMARIZED MONTHLY RESULTS FOR ALL METHODS (ONLY THE

LARGEST OBSERVED VALUE IS LISTED)

Method No control OPF O1 C1 O2 C2

Losses (%) 4.19 4.82 4.602 3.722 4.475 4.812
|V |max (p.u.) 1.09 1.04 1.069 1.039 1.038 1.042
|I|max (%) 112 100 119.9 91.5 104.2 101.5
Pc (%) 0 0.96 0 4.93 1.16 1.18

locational impact, we consider two locations for these changes;

that is, at Node 4 - close to the secondary of the transformer,

and at Node 11 - almost at the end of the feeder, both at

phase C. The added PV unit and load are chosen as 50% of

the respective values of PV capacity and load of Node 19.

Figure 6 shows the boxplots (minimum, first quartile, me-

dian, third quartile, and maximum values) for the monthly

voltage magnitude at Phase C of Node 19, for all methods.

In all cases, adding a PV unit at Node 11 (away from the

substation) results in higher grid voltages, compared to Node

4 which is close to the transformer where voltage is regulated.

As with the previous tests, method O1 is the most inefficient,

imposing a certain behavior to all DGs. Methods C1, O2

and C2 behave satisfactorily, with overvoltages only when

adding a PV at Node 11. In this case, Method C2 achieves

the best performance since it reacts to the measured voltage,

although the change has occurred elsewhere in the grid. This

highlights the benefit of method C2, since voltage inherently

brings global information through the physics of the system.

Finally, the two load cases are similar, because the amount of

load that is added is relative low and does not influence the

voltages significantly.

V. CONCLUSION

In the future, active DNs will rely on controlling DERs

to ensure a safe, reliable and optimal operation of the grid.

On the one hand, centralized, OPF-based controllers achieve

optimal results, but rely on communication and monitoring

infrastructure. On the other hand, local schemes are robust

and inexpensive, but cannot cope efficiently with the modern

challenges of DNs. In this paper, we examine data-driven

local control schemes, trained off-line to mimic the central-

ized optimal behavior without the need for monitoring and

communication infrastructure. We revisited existing methods,

proposed a new variation (C2), and compared in terms of

performance under normal and unseen conditions. Future work
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Fig. 6. Boxplots of the voltage magnitudes for all methods when a new PV
unit or load is installed at Node 19, phase C.

will focus on the inclusion of safety constraints in the design

stage of such controllers.
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[23] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in

matlab,” in Proc. of the CACSD Conference, Taiwan, 2004.
[24] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016.

[Online]. Available: http://www.gurobi.com


