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Abstract—The optimal control of distribution networks often
requires monitoring and communication infrastructure, either
centralized or distributed. However, most of the current distri-
bution systems lack this kind of infrastructure and rely on sub-
optimal, fit-and-forget, local controls to ensure the security of
the network. In this paper, we propose a data-driven algorithm
that uses historical data, advanced optimization techniques, and
machine learning methods, to design local controls that emulate
the optimal behavior without the use of any communication.
We demonstrate the performance of the optimized local control
on a three-phase, unbalanced, low-voltage, distribution network.
The results show that our data-driven methodology clearly
outperforms standard industry local control and successfully
imitates an optimal-power-flow-based control.

Index Terms—data-driven control design, decentralized con-
trol, active distribution networks, OPF, backward forward sweep
power flow, machine learning, distributed energy resources

I. INTRODUCTION

Some of the most notable developments foreseen in power
systems target Distribution Networks (DNs). In the future,
DNs will host a large percentage of Distributed Generators
(DGs), including Renewable Energy Sources (RES), to sup-
ply a growing share of the total demand. These units, in
combination with other Distributed Energy Resources (DERs)
such as electric vehicles, Battery Energy Storage Systems
(BESSs) and Flexible Loads (FLs), will elevate the role
of Distribution System Operators (DSOs), allowing them to
provide ancillary services and support the bulk transmission
system [1]. However, this new paradigm introduces significant
challenges to the DN operation [1].

Traditionally, to address these challenges, DSOs have relied
only on grid reinforcement and ignored the flexibility offered
by DERs. This approach is now unable to cope with the new
challenges while keeping the cost for the consumer low and
achieving high security and reliability goals. It is apparent that
DSOs need to operate DNs actively, involving DERs to ensure
secure, reliable and cost-effective operation.

Based on the communication infrastructure available for
controlling the DERs, operational schemes can be broadly
classified as centralized, distributed and decentralized or lo-
cal. Centralized schemes require extensive monitoring and
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communication infrastructure and usually leverage the per-
formance of powerful optimization-based control techniques.
The capabilities of extensive monitoring and communication
infrastructure allow for system-wide optimal operation by
coordinated control of DERs [2], [3]. This type of control has
lately attracted significant attention thanks to advances in com-
putational power, wireless communication, and new theoretical
developments in approximations of the nonlinear AC power
flow equations [4], [5]. A lot of methods rely on semi-definite
relaxations, e.g. [4], which find global optimal solutions in
many practical cases with specific conditions, but not in the
general case [6]. Lately, many researchers started dealing with
multi-phase systems, e.g. [7], [8]. A very efficient method is
presented in [8] based on linear manifold approximants, while
in [7] the authors use an iterative algorithm to solve the OPF
as a nonconvex quadratically constrained quadratic program.
However, they do not model explicitly the power losses in LV
grids, neither consider uncertainties.

Nevertheless, the infrastructure required for this type of
control is rarely available in DNs, and the financial benefit for
investing in such capabilities not clear. Decentralized control
strategies, e.g. [9], [10], tackle power quality and security
problems using only local measurements. These type of con-
trols are widely used in DNs today and have been embedded
in several grid codes. The benefit of these methods lies in the
simplicity and the relatively low cost of implementation. No
communication infrastructure is needed, keeping the required
investment at a minimum. However, these methods usually
employ a one-size-fits-all approach, where the same control
parameters are employed in all DNs, different generator types,
and operating conditions. This approach can lead to unforeseen
problems, especially in a rapidly changing environment.

Finally, distributed approaches, e.g. [11], [12], use limited
communication between different DERs to coordinate them
and achieve a close-to-optimal operation. While these methods
try to bridge the gap between local and centralized meth-
ods, they still require some communication infrastructure and
usually employ consensus-based control algorithms which are
sensitive to communication delays and errors.

Lately, data-driven methods have attracted a lot of attention
in the power systems area [13]–[17]. In [13], data-based meth-
ods are used to solve a distributionally robust OPF problem.
The method is based on a model predictive control algorithm
that utilizes forecast error training datasets, and the focus is
on obtaining closed-loop control policies which are robust to
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Fig. 1. Overview of the proposed data-driven control design method.

sampling errors in the data. In [14], the authors demonstrate
the method to mitigate overvoltages, assuming balanced phase
loading. However, this approach requires a centralized scheme
as well as reliable and accurate monitoring and communication
infrastructure. Using machine learning techniques to represent
the optimal behavior is studied in [15]–[19]. Reference [15]
uses non-linear control policies to calculate the real-time
reactive power injections of the inverter-based DGs. Although
it uses a linearized version of the grid, assumes balanced
operation and focuses only on one measure, i.e. reactive power
control, this scheme is very flexible due to the various kernel
functions which are able to model complex and non-linear
behaviors. In [17] and [16], multiple linear regression is used
in an open-loop fashion to calculate a function for each inverter
that maps its local historical data to pre-calculated optimal
reactive power injections. However, both references consider
only reactive power control, neglecting possible combinations
with other available controls, and reference [17] assumes a
balanced DN, i.e. using a single-phase representation.

The focus of this work is on distribution grids where
communication and monitoring infrastructures have not been
deployed yet. Thus, in this paper, we propose a data-driven
control design method to derive optimized local controls for
several types of DERs. However, it should be mentioned that
even in an environment with deep penetration of communi-
cation capabilities, local controls are valuable as they provide
a scalable approach to efficiently utilize an increasingly large
number of distributed resources. The methodology is sketched
in Fig. 1 and detailed hereafter.

First, we use a model of the DN under study along with
historical generation and consumption data. Then, we employ
an offline centralized optimization algorithm to compute the
optimal DER control setpoints for different operating condi-
tions. The objective of the offline algorithm is to minimize
the system losses and adjustments of DER resources while
ensuring system security and power quality. The formulation
takes into account the uncertainty coming from RES and the
unbalanced, three-phase, operation. Finally, we use Machine
Learning (ML) techniques applied on the optimal setpoints ob-
tained from this optimization to design local DER controls for
the real-time operation of the DN. In this way, we derive sim-
ple and efficient optimized local controls that can mimic the
behaviour of centralized optimization-based schemes, without
the need of any communication infrastructure.

This paper extends and completes our previous work
in [18]–[20]. In [18], we presented the idea of designing
customized control schemes for each DER based on off-
line centralized optimization. However, we only considered
reactive power control and active power curtailment, and the
derivation of the local volt-var curves was not based on ML
techniques, but on rule-based heuristics. In [20], we added

controllable loads in our methodology with a simple rule-based
real-time control scheme. Finally, in [19] we utilized Support
Vector Machines (SVMs) to derive local volt-var curves, but
we accounted ex-post for the needed monotonicity and slope
constraints of the final curves.

In this paper, we consider reactive power control, active
power curtailment, controllable load shifting and battery en-
ergy storage systems. The local schemes are derived by several
machine learning techniques, such as segmented regression
and SVMs as regressors and classifiers. More specifically, the
contributions of this paper can be summarized as follows:
• A computationally tractable off-line centralized control

algorithm based on a three-phase, multi-period, Chance-
Constrained Optimal Power Flow (CC-OPF), considering
RES uncertainty and unbalanced operation.

• A novel data-driven local control design methodology for
the optimal operation of several types of DERs, using
different regression and classification ML techniques.

It should be noted that in this work, we use the centralized
scheme off-line, i.e. it does not require real-time monitoring
and communication infrastructure. Instead, we use historical
values collected in the past. Although any OPF formulation
suitable for DNs can be used to derive the optimal DER
setpoints, the proposed formulation allows us to use a tractable
three-phase multi-time OPF formulation that can consider
uncertainties and various models of DERs.

The remainder of the paper is organized as follows: In
Section II, we present the mathematical formulation of the
CC-OPF algorithm used to obtain the optimal DER setpoints.
Then, in Section III, we describe the ML methods used for
deriving the optimized local control schemes of the DERs.
In Section IV, we introduce the case study and simulation
results that show the performance of the optimized controllers.
Finally, we draw conclusions in Section V.

II. CENTRALIZED CHANCE-CONSTRAINED OPF
In this section, the centralized CC-OPF scheme used to

compute the optimal DER setpoints for different operating
conditions is presented. The objectives and constraints of the
OPF-based algorithm are vital for the overall methodology as
they will be reflected in the generated optimal DER setpoint
data and will in turn influence the local control design.

It should be noted that having enough data to run an OPF
is critical to the process. The data can be gathered using low-
cost energy monitoring devices and if some data are missing or
noisy, we can extrapolate using historical data, public domain
information, or information from neighbouring systems.

A. Centralized OPF

1) Objective function: The objective function selected in-
cludes minimizing the cost of DER control and the network
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losses, over all of the network nodes (Nb), phases (z) and
branches (Nbr) for the entire time horizon (Nhor). This is
described by:

min
u

Nhor∑
t=1

{ ∑
z∈{a,b,c}

Nb∑
j=1

(
CP ·Pcurt,j,z,t +CQ ·Qctrl,j,z,t

)

+
∑

z∈{a,b,c}

Nbr∑
i=1

CP ·Ploss,i,z,t

}
·∆t (1)

+ CH ·
(
||ηV||∞ + ||ηI||∞ + ||ηVUF||∞

)
where u is the vector of the available active control measures
and ∆t is the length of each time period. The curtailed power
of the DGs connected at phase z, at node j and time t
is given by Pcurt,j,z,t = Pmax

g,j,z,t − Pg,j,z,t, where Pmax
g,j,z,t is the

maximum available active power and Pg,j,z,t the active power
injection of the DGs. The use of reactive power support
Qctrl,j,z,t = |Qg,j,z,t| for each DG connected to phase z of node j
and time t is also minimized; Qg,j,z,t represents the DG reactive
power injection or absorption. The coefficients CP and CQ
represent, respectively, the DG cost of curtailing active power
and providing reactive power support (DG opportunity cost
or contractual agreement). The assumption that CQ � CP
is made, which prioritizes the use of reactive power control
over active power curtailment. In our case, we follow the
method of [21] and perform Kron’s reduction in order to
use a three-phase three-wire power flow representation. In
this case, the phase voltages and currents are obtained with
acceptable accuracy, but as it is shown in [22], calculating the
losses using the current magnitude squared times the resistance
formula, leads to high overestimation of the correct total
losses. Thus, in this case, one can calculate the total losses, by
using the difference between input and output power in each
phase [23]. Thus, Ploss,i,z,t = |Re(Sif ,z,t + Sit,z,t)|, where Sif ,z,t
and Sit,z,t represent the apparent power flowing into branch
i from each end; if and it are the sending and receiving
ends of the branch. Finally, CH is a large penalty associated
with violating the security and power quality constraints. It is
used in conjunction with the variables (ηV, ηI, ηVUF) to relax
respectively the voltage, thermal or balancing constraints and
avoid infeasibility. When one of these limits is binding, the
output of the overall objective function gets dominated by
this term and might lose a real monetary meaning (unless the
cost of violating the security and power quality constraints is
quantified and monetized by the DSO).

2) Power balance constraints: The power injections at
every node j, phase z and time step t are given by

Pinj,j,z,t = Pg,j,z,t − Plflex,j,z,t − (P ch
B,j,z,t − P dis

B,j,z,t) (2a)

Qinj,j,z,t = Qg,j,z,t − Plflex,j,z,t · tan(φload) +QB,j,z,t (2b)

where Plflex,j,z,t and Plflex,j,z,t · tan(φload) are the active and
reactive node demands (after control) of constant power type,
with cos(φload) being the power factor of the load; QB,j,z,t
the reactive power of the BESS and, P ch

B,j,z,t and P dis
B,j,z,t are

respectively the charging and discharging BESS active powers.

3) Power flow constraints: The non-linear AC power-flow
equations that model the DN network make solving the OPF
problem computationally challenging. Since the OPF will be
used to process several scenarios in a multi-period framework,
it is necessary to use some approximations to increase its
computational performance. For this reason, the iterative Back-
ward/Forward Sweep (BFS) power flow [24] method is used in
this work, extending the formulation presented by the authors
in [20], [25], [26] for a three-phase, unbalanced system.

Following our previous work [26], a single iteration of the
BFS power-flow method is used to replace the AC power-
flow constraints in the OPF formulation. This is written as
(j = 1, . . . Nb, z ∈ {a, b, c}):

Iinj,j,z,t =

(
(Pinj,j,z,t + jQinj,j,z,t)

∗

V̄ ∗j,z,t

)
Ibr,t = BIBC · Iinj,t

∆Vt = BCBV · Ibr,t

Vt = Vslack −∆Vtap · ρt + ∆Vt

ρmin ≤ ρt ≤ ρmax, (3)

where V̄ ∗j,z,t is the voltage of phase z, at node j at time t,
∗ indicates the complex conjugate and the bar indicates that the
value from the previous iteration is used (details will be given
later); Iinj,t and Ibr,t are respectively the vectors of the three-
phase bus injection and branch flow currents; and, BIBC
(Bus Injection to Branch Current) is a matrix with ones and
zeros, capturing the three-phase topology of the DN (including
any single-phase laterals); ∆Vt is the vector of voltage drops
over all branches and phases; BCBV (Branch Current to
Bus Voltage) is a matrix with the complex impedance of the
lines as elements (including mutual coupling); Vslack is the
three-phase voltage in per unit at the slack bus (here assumed
to be {1< 0◦, 1<−120◦, 1< 120◦}); ∆Vtap is the voltage
magnitude change caused by one tap action of the On-Load
Tap Changer (OLTC) transformer and assumed constant for
all taps for simplicity; and, ρt is an integer value defining the
position of the OLTC position. The parameters (ρmin, ρmax) are
respectively the minimum and maximum tap positions of the
OLTC transformer.

This convex formulation provides a good approximation to
the nonlinear AC OPF [2], is computationally tractable even in
a three-phase model [26], and results in AC feasible solutions
which can account for uncertainties, see [25] and Section II-B.

4) Thermal loading and voltage constraints: The constraint
for the current magnitude for branch i and phase z at time t
is given by

|Ibr,i,z,t| ≤ Ii,z,max + ηI,i,z,t, ηI,i,z,t ≥ 0 (4)

where Ibr,i,z,t is the branch current; Ii,z,max is the maximum
thermal limit; and, ηI,i,z,t is used to relax the constraint when
the thermal constraints cannot be met.

Similarly, the voltage constraints are given by

Vmin − ηV,j,z,t ≤ |Vj,z,t| ≤ Vmax + ηV,j,z,t, ηV,j,z,t ≥ 0 (5)

where (Vmax, Vmin) are respectively the upper and lower ac-
ceptable voltage limits and ηV,j,z,t is used to relax the constraint
when the voltage constraints cannot be met.



4

Unfortunately, (5) is non-convex due to the minimum
voltage magnitude requirement. In order to avoid the non-
convexity, we rotate the three voltage phases {a, b, c} by R =
{1< 0◦, 1< 120◦, 1<−120◦} so that they lie close to the
reference axis 0◦ and we define the same feasible space for
each of the three phases (see [26] for more details){

|RVj,z,t| ≤ Vmax + ηV,j,z,t

Re {RVj,z,t} ≥ Vmin − ηV,j,z,t
(6)

5) Balancing constraint: A balancing constraint is used to
improve the power quality of the DN by balancing the three
phase voltages. We use the IEC unbalance definition [27],
[28] of Voltage Unbalance Factor (V UF ), which is given by
V UF (%) = 100% |V−|

|V+| , where V− and V+ are respectively
the negative and positive sequence derived by symmetrical
component analysis.

The balancing constraint for node j and time t is given by
V UFj,t(%) ≤ V UFMAX, where V UFMAX is the acceptable
voltage unbalance factor (e.g. 2% for 95% of the week ac-
cording to EN50160 [29]). Since this constraint is non-convex,
we approximate V UF by the negative voltage sequence [26],
assuming the positive voltage sequence is very close to 1 pu,
i.e. V UFj,t ≈ |V-,j,t|. This gives

|V-,j,t| ≤ V UFMAX + ηVUF,j,t, ηVUF,j,t ≥ 0 (7)

where ηVUF,j,t relaxes the constraint when it cannot be met.
6) DER constraints:

a) DG limits: In this work, without loss of generality, we
only consider inverter-based DGs such as PVs. Their limits are
thus given by

Pmin
g,j,z,t ≤ Pg,j,z,t ≤ Pmax

g,j,z,t (8a)

Qmin
g,j,z,t ≤ Qg,j,z,t ≤ Qmax

g,j,z,t (8b)

where Pmin
g,j,z,t, P

max
g,j,z,t, Q

min
g,j,z,t and Qmax

g,j,z,t are the upper and lower
limits for active and reactive DG power at each node j, phase
z and time t. These limits vary depending on the type of
the DG and the control schemes implemented. Usually, small
DGs have technical or regulatory [30] limitations on the power
factor they can operate at or reactive power they can produce.
This restriction can be included by linking the active and
reactive power limits in (8) through the maximum power factor
value.

b) Controllable loads: Moreover, we consider flexible
loads which can shift a fixed amount of energy consumption
in time. The behavior of the loads is given by

Plflex,j,z,t = Pl,j,z,t + nj,z,t · Pshift,j,z,

Nhor∑
t=1

nj,z,t = 0 (9)

where Plflex,j,z,t is the controlled active power demand at phase
z of node j and at time t, Pshift,j,z is the load that can be
shifted (assumed constant) and nj,z,t ∈ {−1, 0, 1} is an integer
variable indicating an increase or a decrease of the load when
shifted from the initial demand Pl,j,z,t. We assume that the final
total daily energy demand needs to be maintained.

c) Battery Energy Storage Systems: Finally, the con-
straints related to the BESS are given as

SoCbat
min · Ebat

cap,j,z ≤ Ebat
j,z,t ≤ SoCbat

max · Ebat
cap,j,z (10a)

Ebat
j,z,1 = Estart (10b)

Ebat
j,z,t = Ebat

j,z,t-1 + (ηbat · P ch
B,j,z,t −

P dis
B,j,z,t

ηbat
) ·∆t (10c)

0 ≤ P ch
B,j,z,t ≤ P bat

max, 0 ≤ P dis
B,j,z,t ≤ P bat

max (10d)

P ch
B,j,z,t + P dis

B,j,z,t ≤ max(P ch
B,j,z,t, P

dis
B,j,z,t) (10e)

Q2
B,j,z,t ≤ (Sbat

max)2 −max((P ch
B,j,z,t)

2, (P dis
B,j,z,t)

2) (10f)

where Ebat
cap,j,z is the installed BESS capacity connected to

phase z at node j; SoCbat
min and SoCbat

max are the fixed minimum
and maximum per unit limits for the battery state of charge;
and, Ebat

j,z,t is the available energy at node j, phase z and time
t. The initial energy content of the BESS in the first time
period is given by Estart, and (10c) updates the energy in the
storage at each period t based on the BESS efficiency ηbat,
time interval ∆t and the charging and discharging power of
the BESS P ch

B,j,z,t and P dis
B,j,z,t. The charging and discharging

powers are defined as positive according to (10d), while (10e)
is re-casted as mixed-integer constraint with 2 binaries for
each time step, and ensures that the BESS is not charging and
discharging at the same time.

B. Accounting for Uncertainty through Chance Constraints

To account for the effect of generation uncertainty and to
limit possible adverse effects on the security constraints, we
reformulate the problem using chance constraints. Chance-
constrained optimization problems aim to keep the probability
of certain random events below targeted values. In this work,
we assume that the PV power injection is the only source of
uncertainty. However, load uncertainty can be also included in
a similar way. The interested reader is referred to [31] for a
general overview of risk-aware control under uncertainties.

1) Formulation of the Chance Constraints: The branch
current flows and the voltage magnitudes are functions of the
power injections and are hence directly influenced by the PV
power uncertainty. Thus, we model the corresponding voltage
and current constraints as chance constraints that will hold
with a chosen probability 1 − ε, where ε is the acceptable
violation probability. E.g., the maximum voltage magnitude
constraint is reformulated as P {|Vbus,j,t| ≤ Vmax} ≥ 1− ε [32].

To solve the resulting CC-OPF, we need to reformulate
the constraints in a tractable form. This can be achieved by
using an analytical form assuming a certain distribution of
the forecast error [33], or a distribution-agnostic method [13],
[33]. In this work, we follow [34], [35] that rely on an iterative
solution scheme that fits very well with the iterative nature of
the BFS-OPF. The core idea is that the chance-constrained
problem can be cast as a deterministic problem with tightened
constraints. The tightenings represent security margins against
uncertainty, i.e., uncertainty margins, which drive the trade-
off between cost and system security, and are functions of
the optimization variables. The iterative scheme alternates
between solving the deterministic problem with a given set of
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tightenings, and evaluating the optimal constraint tightening
based on the solution of the deterministic problem [25].
A feasible solution is found when the tightenings do not
change between iterations. Thus, we interpret the probabilistic
constraints as tightened deterministic versions of the original
constraints, and we express (4) and (6) as{

|RVj,z,t| ≤ Vmax − Ωupper
V j,z,t + ηV,j,z,t

Re {RVj,z,t} ≥ Vmin + Ωlower
V j,z,t − ηV,j,z,t

(11)

|Ibr,i,z,t| ≤ Ii,z,max − ΩIbr,i + ηI,i,z,t (12)

where Ωlower
V , Ωupper

V are the tightenings for the lower and upper
voltage magnitude constraints and ΩIbr are the tightenings of
the current magnitude constraints. The procedure is explained
in more detail in [25].

2) Uncertainty margin evaluation based on Monte Carlo
Simulations: to evaluate the uncertainty margins, we use a
Monte Carlo method. The uncertainty margins are considered
constant within the OPF solution, but then evaluated outside
of the OPF iterations. The advantages of this method lie in
the ability to use the non-linear AC power-flow and to have
any uncertainty probability distribution.

First, empirical distributions for the voltage and current
chance constraints are formed at each time step based on the
Monte Carlo simulations. To enforce a chance constraint with
1−ε probability we need to ensure that the 1−ε quantile of the
distribution remains within the bounds. Thus, the tightening
corresponds to the difference between the forecasted value
with zero forecast error and the 1− ε quantile value evaluated
based on the empirical distribution resulting from the Monte
Carlo Simulations, e.g. |V 0

bus,j,t| and |V 1-ε
bus,j,t| for the voltage

constraints. The empirical uncertainty margins to be used in
the next iteration are then given by

Ωupper
V j,t = |V 1-ε

bus,j,t| − |V 0
bus,j,t| (13a)

Ωlower
V j,t = |V 0

bus,j,t| − |V εbus,j,t| (13b)

Ωupper
Ibr,i

= |I1-ε
br,i,t| − |I0

br,i,t| (13c)

where superscript 0 indicates the values at the operating point
with zero forecast error.

3) Iterative Solution Algorithm: Since the uncertainty mar-
gins rely on the selected DER setpoints, an iterative algorithm
is used to solve the problem [35], [36]. It alternates between
solving a deterministic OPF with tightened constraints, and
calculating the uncertainty margins Ωlower

V , Ωupper
V , Ωupper

Ibr
.

When the change in the tightening values between two sub-
sequent iterations is below a threshold (ηΩ

V , η
Ω
I ), then the

algorithm has converged.

C. Solution Algorithm

In this section, we summarize the proposed solution method
for the centralized CC-OPF scheme, sketched in Fig. 2. First,
the initialization stage sets the uncertainty margins to zero and
initializes the voltage levels of the three phases to a flat voltage
profile. At the core of the proposed methodology lies the
formulation of the three-phase multi-period centralized CC-
OPF, which is summarized as

min
u

Nhor∑
t=1

{ ∑
z∈{a,b,c}

Nb∑
j=1

(
CP ·Pcurt,j,z,t +CQ ·Qctrl,j,z,t

)

+
∑

z∈{a,b,c}

Nbr∑
i=1

CP ·Ploss,i,z,t

}
·∆t

+ CH ·
(
||ηV||∞ + ||ηI||∞ + ||ηVUF||∞

)
(14)

subject to

Pinj,j,z,t = Pg,j,z,t − Plflex,j,z,t − (P ch
B,j,z,t − P dis

B,j,z,t)

Qinj,j,z,t = Qg,j,z,t − Plflex,j,z,t · tan(φload) +QB,j,z,t

Iinj,j,z,t =

(
(Pinj,j,z,t + jQinj,j,z,t)

∗

V̄ ∗j,z,t

)
Ibr,t = BIBC · Iinj,t

∆Vt = BCBV · Ibr,t

Vt = Vslack −∆Vtap · ρt + ∆Vt

ρmin ≤ ρt ≤ ρmax
|V-,j,t| ≤ V UFMAX + ηVUF,j,t, ηVUF,j,t ≥ 0

Pmin
g,j,z,t ≤ Pg,j,z,t ≤ Pmax

g,j,z,t

Qmin
g,j,z,t ≤ Qg,j,z,t ≤ Qmax

g,j,z,t

Plflex,j,z,t = Pl,j,z,t + nj,z,t · Pshift,j,z,

Nhor∑
t=1

nj,z,t = 0

SoCbat
min · Ebat

cap,j,z ≤ Ebat
j,z,t ≤ SoCbat

max · Ebat
cap,j,z

Ebat
j,z,1 = Estart

Ebat
j,z,t = Ebat

j,z,t-1 + (ηbat · P ch
B,j,z,t −

P dis
B,j,z,t

ηbat
) ·∆t

0 ≤ P ch
B,j,z,t ≤ P bat

max, 0 ≤ P dis
B,j,z,t ≤ P bat

max

P ch
B,j,z,t + P dis

B,j,z,t ≤ max(P ch
B,j,z,t, P

dis
B,j,z,t)

Q2
B,j,z,t ≤ (Sbat

max)2 −max((P ch
B,j,z,t)

2, (P dis
B,j,z,t)

2){
|RVj,z,t| ≤ Vmax − Ωupper

V j,z,t + ηV,j,z,t

Re {RVj,z,t} ≥ Vmin + Ωlower
V j,z,t − ηV,j,z,t

|Ibr,i,z,t| ≤ Ii,z,max − ΩIbr,i + ηI,i,z,t.

The BFS-OPF block calculates the optimal DER setpoints
based on a single sweep of the BFS algorithm. Thus, the
single iteration of the BFS equations replaces the non-convex,
exact AC power flow equations with a linearized version. After
we obtain the OPF setpoints, we run an exact power flow
algorithm using the obtained control settings to project the
solution to the AC feasible space. The BFS-OPF block is then
performed again using the updated voltages from the exact
BFS power flow. These inner iterations are carried out until
convergence. After the multi-period BFS-OPF has converged,
we account for uncertainties in the outer loop as described
in Section II-B. The uncertainty margins are evaluated using
the Monte Carlo approach, i.e. running AC power flows with
samples of the uncertain PV injections. The iteration index
of the OPF loop is denoted by k and the iteration of the
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Fig. 2. Proposed centralized CC-OPF scheme for the computation of the
optimal DER setpoints.

uncertainty loop by m. The iterative procedure continues until
all parts of the algorithm have reached convergence.

The convergence characteristics of the proposed method are
analyzed in [25], [32]. In [25], we show that the algorithm
works well for practical cases where the OPF solution does
not change significantly, i.e. does not show sudden changes
from iteration to iteration. In this case, the tightenings do
not change much, and convergence is reached after a few
iterations. However, there might be cases where the algorithm
does not converge. As explained in [32], subsequent iterates in
the algorithm might cycle between repeated points that have
large differences in the associated tightenings. In that paper,
the authors followed a cut-and-branch approach to interrupt
the cycling and enforce convergence. In our case, when we
are faced with non-convergent cases, the algorithm uses an
acceleration factor changing the solution less aggressively to
avoid oscillations between repeated points, but at the cost of
increasing the needed number of iterations.

III. OPTIMIZED LOCAL CONTROL DESIGN

In this section, we describe the core idea of the paper as
summarized in Fig. 1. First, we discuss what kind of data are
needed to perform the offline CC-OPF, which is explained
in detail in Section II-A. Then, after deriving the optimal
DER setpoints, we explain how we design the individual local
controls for each DER using various ML techniques.

A. Optimal DER setpoint data generation
The first step is to generate the optimal DER setpoint data

that will be used for the training of the local controls. To

do this, several operating scenarios are selected from seasonal
historical data. Then, the CC-OPF of Section II is used to
compute off-line the optimal DER setpoints. The selection of
the scenarios is critical, since they will form the basis for the
training of the local schemes.

The DSO does not know the exact generation of all PVs in
the LV system in the operational stage (as this would require
detailed monitoring of all PVs). However, the DSO is aware
of the installed DG capacity and the PV generation can be
estimated with some uncertainty, using historical expected PV
injection data and the installed capacity. These estimates are
used in the CC-OPF solution.

The proposed method can be used with different seasonal
data to account for seasonalities in terms of the DG injections
and load. By changing the local control schemes based on the
season, e.g. using the actual date, or when the topology of
the DN changes, one can easily derive a behavior close to the
optimal during the whole year.

B. Derivation of DG local controls

For the DGs, we derive optimized local controls for Active
Power Curtailment (APC) and Reactive Power Control (RPC).
These controls take the form of simple, piece-wise linear char-
acteristic curves (such as in [18]), much like the local control
schemes used today in industry. Unlike the current industry
standards, these characteristics might have an arbitrarily large
number of piece-wise linear segments and are optimized for
each individual DG and DN.

Defining the location of the break-points and the slope
coefficients is a non-linear and non-differentiable problem.
Thus, we employ the method in Algorithm 1 coming from [37]
that iteratively refines the location of the break-points while
solving a constraint residual sum-of-squares (RSS) optimiza-
tion problem for the slope coefficients.

Algorithm 1 Local DG control design (x ∈ {p, q})
Input: Optimal DG setpoints
Output: Optimized local characteristic curve

1: Set ns, initialize the break-points s, i = 1, RSS0 = 1000
2: Iterate:

RSSi := min
x̃0,β,s,γ

T∑
t

Pg,t · (xt − x̃t)2 +

ns∑
k=1

γ2
k

subject to

x̃t= x̃0 +β0 · vt +
ns∑
k=1

βk · (vt− sik) · I(vt>s
i
k) +

−
ns∑
k=1

γk · I(vt>s
i
k)

Monotonicity and slope constraints
3: Update si+1

k = γk
βk

+ sik and iteration index i = i+ 1
4: Until: |RSSi −RSSi-1| < 0.0001
5: Post-process the derived characteristic curves to be com-

plete for all voltage values.
Return: Break-points s and slope factors β for each DG as
{P,Q}DG=f(V )
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First, we define the number of break-points ns and initialize
them. Then, we use the iterative steps 2− 4, where we solve
the residual sum of squares problem using the active power
injections as weights in the objective function, fitting the linear
equivalent estimation model taking into account monotonicity
and slope constraints. As inputs, we use the voltage vt for
each sample t, ∀t = 1, . . . , T . Then, we fit the linear model
based on the known breakpoints sik, ∀k = 1, . . . , ns at the
current iteration i, the left slope β0 and difference-in-slopes
βk. The indicator function I(·) becomes one when the inside
statement is true. Finally, x̃0 is the model intercept and γ
a parameter which updates the location of the breakpoints
towards the optimal one.

Omitting the indices for clarity, the key idea is to substitute
the non-linear function β · (v− s) · I(v >s) where both the
difference-in-slope and the break-points are unknown, with its
Taylor expansion using fixed break-points at each iteration i
β · (v− si) · I(v>si)− γ · I(v>si) [37].

The same method is used both for the APC and RPC curves,
using respectively the PV optimal active (p) and reactive (q)
setpoints from the CC-OPF.

C. Local control of Battery Energy Storage Systems

Due to the more complex behavior of BESSs, e.g. inter-
temporal constraints, we chose an SVM regression model
to approximate the optimal setpoints of active and reactive
power for the BESSs. An SVM regression model calculates
a function, which deviates from the training data by a value
no greater than a predetermined margin (ε in Algorithm 2),
and at the same time is as flat as possible. SVM models are
very powerful because they can also model nonlinear functions
(or decision boundaries). This is achieved, by mapping the
training set from the input space into higher dimensional
spaces, called feature spaces, by performing a non-linear
transformation using suitably chosen basis functions (kernels).
Then, they solve the linear model in the new space problem,
which describes a nonlinear behavior in the original (input)
space [38]. The procedure of training the SVM controllers
follows [19] and is summarized in Algorithm 2. We use
as features (Φ) the local active and reactive power demand
(Pload, Qload), the active power injection of the PV at the same

Algorithm 2 Local BESS control design (x ∈ {p, q})
Input: Optimal BESS setpoints
Output: SVM model for the real-time BESS response

1: For each BESS unit form Φ = [V, Pload, Qload, Pg] and
assume a function f(Φ) =

〈
w,Φ

〉
+ b.

2: Apply the linear, polynomial and radial-basis function
kernels to Φ.

Solve: min
w,b,ξ

1
2w

Tw + C
T∑
t=1

(ξ + ξ∗)

subject to
x−

〈
w,Φi

〉
− b ≤ ε+ ξ,∀ (Φi, x)〈

w,Φi
〉

+ b− x ≤ ε+ ξ∗,∀ (Φi, x)
3: Identify the kernel with the lowest out-of-sample error

Return: {P,Q}B=f(V, Pload, Qload, Pg)

node (Pg) and the local voltage measurement (V ). We then use
these local features, in their actual or a higher dimensional
space through Kernels, to create a model that mimics the
optimal response by the CC-OPF setpoints.

In order to derive the best SVM model, we test three
different Kernels: the linear (

〈
Φ,ΦT

〉
in which case C in

the objective function is a free parameter), the polynomial
((γ
〈
Φ,ΦT

〉
+ r)d where C and the polynomial order d are

free parameters) and the Radial-Basis Function (RBF) Kernel
(e(−γ|Φ−ΦT |)2 where C and the kernel scale γ are free param-
eters). Assuming a regression function f(Φ) =

〈
w,Φ

〉
+ b,

we solve the convex optimization problem shown in Step 2,
for all these Kernels in order to identify the most suitable
one. The constant C, also called box constraint, takes positive
values and penalizes the observations that lie outside the region
defined by ε, helping to prevent overfitting (regularization).
The value of C assesses the trade-off between the flatness of
the regression function and the amount up to which deviations
larger than ε are tolerated. Finally, we keep the model with
the kernel resulting in the lowest overall out-of-sample error
through a 5-fold cross validation process.

D. Local control of Controllable Loads

For the controllable loads, we use an SVM model as a
classifier, where we define three classes yc ∈ {−1, 0, 1} for
the ‘load decrease’, ‘no shifting’ and ‘load increase’ cases,
respectively. As features we use Φ = [V, Pg], where V
is the local voltage measurement and Pg the active power
injection of the PV at the same node. Intuitively, high PV
injections increase local voltages triggering a load increase
action. The optimization problem is similar to the BESS case,
with G(Φ) = sign(f(Φ)) being the classifier.

SVMs are able to deal with datasets with imbalanced class
observations. This can be done by assigning different values
for the box constraint (constant C) for ‘positive and ‘negative
classes, i.e. changing the misclassification penalty for each
class. This is equivalent to changing the class observation
frequencies, i.e. oversampling the minority class. For example,
if Cpos = 2 · Cneg this is in principle equivalent to training a
standard SVM with C = Cneg after considering the positive
training samples twice. Such an approach implementing the
so-called class-weighted SVM has been introduced in many
references such as [39]. In our model, the classes of ‘load
increase’ and ‘load decrease’ are balanced by design, due to
constraints (9), that impose preservation of the daily load.
Thus, since only the class no load shifting can comprise
different amount of observation samples, we considered a
different weight in this classification class.

IV. CASE STUDY - RESULTS

To analyze the performance of the proposed control design
algorithm, we use a typical European radial LV grid [21],
sketched in Fig. 3. The neutral is assumed to be earthed in
several points, and due to the short lengths of cables the
capacitance is neglected. The pole grounding impedance is
40 Ω corresponding to distributed neutral earthing, and the
transformer grounding impedance 3 Ω. Following [21], the
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Fig. 3. Typical residential European LV grid [21].

effect of the ground return path is considered in the primitive
impedance matrices. The interested reader is referred to [23]
for modeling details.

The load and PV panels are distributed to the three phases
unevenly, in order to simulate unbalanced conditions. More
specifically, the total load taken from [21] is shared 25%-60%-
15% among the three phases. The installed PV capacity, is set
to SPV

rated = 150% of the total maximum load of the entire
feeder to the PV nodes = [3, 5, 7, 10, 12, 16, 17, 18, 19], and is
shared 25%-25%-50% among the three phases.

Furthermore, a BESS is located on node 19 of phase C
with capacity 1

2S
PV
rated kWh, where SPV

rated is the rated power of
the PV unit at that particular node. A flexible load of 5 kW
connected to phase C of Node 16, whose total daily energy
consumption needs to be constant. Please note that we assume
single-phase connections for both the loads and the PV panels.

For comparison, we perform three different investigations
for the operation of the system:
• Method 0: The DGs are operating according to the

German grid-code rules [30], and no other DERs are
allowed to be controlled by the DSOs. This corresponds
to the current practice in industry.

• Method 1: All DERs are controlled based on the OPF-
based algorithm described in Section II assuming perfect
communication and monitoring infrastructure. As this
serves as the benchmark of the best achievable perfor-
mance, we consider perfect measurements and predictions
for the whole time horizon without any uncertainty.

• Method 2: All DERs are operating according to the
individual controls derived in Section III.

The implementation was done in MATLAB. For the cen-
tralized OPF-based control, YALMIP [40] was used as the
modeling layer and Gurobi [41] as the solver. The results were
obtained on an Intel Core i7-2600 CPU and 16 GB of RAM.

A. Derived local control

To derive the local control schemes of all DERs, we use a
30-day summer dataset with forecasts of the PV production
with 1-hour time resolution. Thus, for all cases, the training
set comprises 30 ∗ 24 = 7200 samples. Then, the algorithm
described in Section II is used to generate the optimal DER
setpoint data. The operational costs are assumed to be CP =
0.1 CHF

kWh and CQ = 0.01 ·CP. The BESS, CL, and OLTC costs
are considered in the planning stage [20] and their use does not
incur any operational cost to the DSO. Finally, CH = 1000·CP
is used to avoid infeasible solutions. For the CC-OPF, we
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Fig. 4. Individual local characteristic curves for reactive power control of the
PV units at phase C.

use forecast error distributions from [42], and draw 1000
samples from the 9-hour ahead forecast error distribution of
the summer power profiles similar to [25]. We assume a perfect
spatial correlation, implying that all PVs follow the same
distribution. An acceptable violation probability of ε = 5% is
used. Then, from the generated optimal DER setpoint data, we
derive the local controls as described in Section III. Figure 4
shows the individual local characteristic curves derived with
Algorithm 1 for the RPC of the PV units in phase C. It can be
seen that the units closer to the secondary of the substation,
i.e. 3, 5 and 12 show a capacitive behavior optimizing the
losses, while the ones facing overvoltage problems at the end
of the feeder, e.g. 16 and 19, show an inductive behavior at
smaller voltages than the maximum of 1.04 p.u.

To obtain BESS and controllable load models that behave
well on unseen data, we perform cross-validation (or out-
of-sample testing), which is a re-sampling procedure to test
the models performance on new data. This procedure helps
identifying overfitting or selection bias issues and to provide
intuition on how the model generalizes to an independent
dataset. In both SVM models, we followed a 5-fold cross-
validation procedure, partitioning the sample data into 5 sets
of 144 samples. We train the SVM models using 4 folds,
and use the remaining to measure the performance. Finally,
after combining (averaging) the results of multiple rounds of
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Fig. 5. Classification regions defining the real - time response of the
controllable loads with the x-axis indicating the local voltage magnitude and
the y-axis the local PV injection.
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TABLE I
SUMMARIZED MONTHLY RESULTS FOR ALL METHODS (ONLY THE

LARGEST OBSERVED VALUE IS LISTED)

Method 0 1 2
Losses (%) 4.60 4.42 4.45
|V |max (p.u.) 1.069 1.04 1.045
|I|max (%) 119.94 100 99.49

V UFmax (%) 1.81 1.98 2.33
Pcurt (%) 0 1.08 2.03

cross-validation, we derive a more accurate estimate of model
prediction performance. For the BESS models, derived with
Algorithm 2, the RBF kernel functions resulted in the best
behavior in terms of out-of-sample validation procedure with
the following parameters: constant C = 236.78, ε = 0.0025,
γ = 1.12, showing an overall RMSE of 0.158.

Finally, for the controllable loads, the method detailed
in Section III-D gives a classifier with overall accuracy of
100% since the data are perfectly linearly separable. Figure 5
shows the decision boundaries that define the three classes in
the space of the two features. As can be observed, for PV
injections higher than 0.3 p.u. the load is increased to reduce
the local voltage in combination with the other available
measures. In low PV injections, e.g. during evening hours, the
load is decreased to maintain the total daily demand constant,
or is not shifted.

B. Results

Table I summarizes the results from applying the three
methods in real-time operation for a test period of one month.
Method 1 corresponds to the benchmark as it satisfies all
security constraints and minimizes the objective function.
Method 0 (standard industry practice) results in higher losses
than the OPF-based approach, due to increased needs for re-
active power by the PV units, without solving the overvoltage,
overload, or balancing issues. Finally, Method 2 mitigates
adequately the overvoltages and overloads to values acceptable
by grid codes, while being capable of mimicking the OPF-
based control without the need of communication. Moreover,
it significantly improves the balancing problems with only
small violations during 5 hours in the month, which is also
acceptable as defined by the grid codes. Figure 6 displays
the real-time control behaviour of the BESS and PV unit at
Node 19, phase C, operating according to Methods 1 and 2.
It can be seen that the proposed local control (Method 2) of
the BESS and PV is more conservative than the OPF-based
approach (Method 1) where the PV unit absorbs the maximum
reactive power for most voltage levels due to the overvoltage
problems. This conservative behavior is due to the CC-OPF
approach we employ (Section II) to generate the data used for
deriving the controls of Method 2. On the contrary, the OPF-
based control (Method 1) uses the actual data, assuming full
knowledge of the network, load and production values through
an ideal communication system without delays. Despite this,
the response using the proposed local controls mimics the OPF
response in a satisfactory way.

Finally, Fig. 7 shows the evolution of the voltage at Node 19
over the ten days. It can be seen that operating with the
current regulations (Method 0) leads to frequent overvoltages.

Fig. 6. Real-time control schemes of the BESS and PV unit of Node 19
phase C.
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Fig. 7. Voltage magnitude evolution at phase C of Node 19.
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Fig. 8. Current magnitude evolution at phase C of Cable 2–3

On the contrary, the OPF-based approach (Method 1) and the
proposed local control satisfy the voltage security constraints.
Similar observations can be made for the thermal loading,
shown for Cable 2–3 in Fig. 8.

V. CONCLUSION

Future DNs will increasingly rely on the active control of
DERs for the security, reliability, and optimal operation of
the grid. While centralized, OPF-based controllers can provide
optimal operation, they rely on expensive monitoring and
communication infrastructure – currently not available in most
DNs. At the same time, the inexpensive, traditional, local
controllers cannot cope with the rapidly changing environment
and increased DER penetration.
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In this paper, we propose a data-driven local control design
methodology to derive local DER controls that can mimic the
centralized controller optimal behavior, without the need for
monitoring and communication infrastructure. This is based
on using ML techniques to derive optimized local controls
based on historical data processed through a CC-OPF. The
controllers are simple to compute, understand, and implement.
Yet, we have shown through the examples used that the
proposed local controls can tackle security problems in an un-
balanced and challenging environment while at the same time
optimize its operation. Future work will focus on comparing
data-driven control schemes using other ML techniques, and
subsequently, on assessing risks and challenges of using such
schemes at operating conditions, which were not seen in the
training dataset.

REFERENCES

[1] N. Hatziargyriou, O. Vlachokyriakou, T. Van Cutsem, J. Milanović,
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