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Abstract—This paper presents a novel virtual synchronous
machine controller for converters in power systems with a high
share of renewable resources. Using an LQR-based optimization
technique, the optimal state feedback gain is determined to
adaptively adjust the emulated inertia and damping constants
according to the frequency disturbance in the system, while
simultaneously preserving a trade-off between the critical fre-
quency limits and the required control effort. Two control
designs are presented and compared against the open-loop model.
The proposed controllers are integrated into a state-of-the-art
converter control scheme and verified through EMT simulations.

Index Terms—linear-quadratic regulator (LQR), virtual syn-
chronous machine (VSM), voltage source converter (VSC), swing
equation, adaptive control

I. INTRODUCTION

The current trends towards green energy have led to all-
time-high penetration levels of renewable energy sources.
Unlike traditional Synchronous Machines (SMs), these dis-
tributed units are usually connected to the grid through fast-
acting power inverters which electrically decouple the kinetic
energy stored in the rotating masses of the generator from
the network, thus resulting in low-inertia systems [1]. The
loss of rotational inertia can have devastating effects on
system dynamics, with large frequency deviations potentially
triggering undesirable events such as load-shedding and large-
scale blackouts, as indicated in [2]. However, this study also
shows that grid-scale energy storage devices can be employed
for providing fast frequency support in isolated systems with
high shares of renewables; such support can be incorporated
within a control scheme of a grid-forming Voltage Source
Converter (VSC) [3].

One of the most common VSC control approaches in
the literature is a Virtual Synchronous Machine (VSM), an
emulation technique based on some form of a swing equation
equivalent that “slows down” the transient system dynamics
[4]. While the sole design and implementation can vary from
a detailed 7th order SM model to a representation of only
the swing equation [5], it is often based on the assumption
that the generator can produce or absorb an infinite amount
of power over short periods of time. Hence, the dynamical
limitations of a DC-side capacitor are neglected, which proves
to be an issue for real-world applications [6]. This problem
was addressed in [7] with a distributed virtual inertia approach
that regulates the DC-link voltages such that the capacitors are
aggregated into a large unit for frequency support. However, it
is implemented via a basic proportional frequency controller
and does not take into account the overall control effort, i.e.,

the value of the stored energy used for regulation. Additionally,
a derivative control term corresponding to the control of
Rate-of-Change-of-Frequency (RoCoF) can be integrated for
containing fast and excessive frequency excursions, either as
a contribution to the traditional droop-like primary frequency
control [8], or component of a more complex heuristic [9] or
optimization-based [10] online-tuning of a VSM. Motivated
by the same approach, a subgroup of so-called interval-based
controllers emerged [11], [12], where a sign of the trigger
signal % = (∆ω)(dω/dt) is used to indicate whether the unit
is in the “accelerating” or “decelerating” mode. The nature
of the mode would then heuristically determine the level of
virtual inertia and/or damping in a gain-scheduling fashion.
Nonetheless, all concepts mentioned above focus solely on the
overall frequency improvement, while disregarding the costs
and energy resources required for such regulation.

We have previously addressed this problem in [13], with an
LQR-based adaptive virtual inertia controller that optimally
adjusts the respective inertia gain to achieve a trade-off be-
tween the two objectives. However, it was implemented on a
simplified, single-inverter test case, and the adaptive damping
was not taken into account. This paper extends the work in
[13] in several directions by (i) deriving a uniform multi-
machine frequency model; (ii) including adaptive damping
and proposing two novel control methods; (iii) providing a
formulation for a decentralized multi-inverter control scheme;
and (iv) incorporating the controllers into a detailed VSC
model and verifying it through EMT simulations. To the best
knowledge of the authors, such uniform approach has not been
proposed in the literature thus far.

The remainder of the paper is structured as follows. In
Section II, the multi-machine system dynamics are investi-
gated, and the respective frequency metrics are analytically de-
rived. Section III describes the adaptive VSM formulation and
proposes two novel control designs, which are subsequently
implemented within a detailed VSC control scheme presented
in Section IV. Section V showcases the EMT simulation
results and compares the methods, whereas Section VI draws
the main conclusions and discusses the outlook of the study.

II. SYSTEM FREQUENCY DYNAMICS

A. Primary Frequency Control in Low Inertia Systems
The first goal is to derive a simplified, but sufficiently

accurate, uniform frequency response model of a low-inertia
system. Let us observe such system consisting of multiple
traditional (subscript g) and converter-based (subscript c)
generators, as depicted in Fig. 1. The generator dynamics are
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Fig. 1: Uniform system frequency dynamics model.

described by the swing equation, with Mg and Dg denoting the
normalized inertia and damping constants of the generators:

Mg =

∑
i∈Ng

MgiPgi

Pbg
, Dg =

∑
i∈Ng

DgiPgi

Pbg
(1)

where i ∈ Ng is the set of traditional synchronous generators
and Pgi are their nominal powers; Pbg refers to the base
power of the generators, i.e., a sum of nominal powers of
all connected generation units. The low-order model proposed
in [14] is used for modelling the governor droop and turbine
dynamics; Tgi are the turbine time constants, Rgi and Kgi are
the respective droop and mechanical power gain factor, while
Fgi denotes the fraction of total power generated by the tur-
bines of synchronous machines. Furthermore, we incorporate
the impact of grid-forming converters, as they are the only type
of PE-interfaced units providing frequency support [3], [15].
A particular focus is set on droop and VSM-based control
schemes, as two of the currently most prevalent emulation
techniques in the literature [5], which in fact have equivalent
properties in the forming mode of operation [16]. Hence, the
set of grid-forming converters providing either droop (Nd)
or VSM (Nv) control is represented by Nc = Nd ∪ Nv . In
Fig. 1, Tcm are the time constants of all converters m ∈ Nc,
Rcj and Kcj are the respective droop and mechanical power
gain factors for j ∈ Nd, whereas Mck and Dck denote the

normalized virtual inertia and damping constants of converters
k ∈ Nv .

B. Analytic Formulation of Frequency Metrics

From Fig. 1 we can now derive a transfer function G(s) of
a general-order system dynamics, as follows:

G(s) =
∆f

∆Pe
=

(
(sMg +Dg) +

∑

i∈Ng

Kgi(1 + sFgiTgi)

Rgi(1 + sTgi)
︸ ︷︷ ︸

traditional generators

+
∑

j∈Nd

Kcj

Rcj (1 + sTcj )
︸ ︷︷ ︸

droop converters

+
∑

k∈Nv

sMck +Dck

1 + sTck
︸ ︷︷ ︸

VSM converters

)−1

(2)

Based on the sensitivity of the frequency response to governor
parameters, it was previously shown in [17] that the frequency
nadir of the SM-based system is the least sensitive to the
governor time constant. Hence, assuming equal time constants
(Tgi = T ) for all synchronous machines is a reasonable
simplification. Additionally, the inverter time constants are
approximately 2-3 orders of magnitude lower than the ones
of synchronous machines, which justifies T � Tcm ≈ 0. Now
we can transform (2) into the following expression:

G(s) =
1

MT

1 + sT

s2 + 2ζωns+ ω2
n

(3)

where the natural frequency (ωn) and damping ratio (ζ) are
computed as

ωn =

√
D +Rg
MT

, ζ =
M + T (D + Fg)

2
√
MT (D +Rg)

(4)

and the respective parameters are defined as follows:

M =
MgPbg +McPbc

Pbg + Pbc
(5a)

D =
DgPbg +DcPbc +RcPbc

Pbg + Pbc
(5b)

Fg =
∑

i∈Ng

KgiFgi
Rgi

Pgi
Pbg

(5c)

Rg =
∑

i∈Ng

Kgi

Rgi

Pgi
Pbg

(5d)

Rc =
∑

j∈Nd

Kcj

Rcj

Pcj
Pbc

(5e)

Mc =
∑

k∈Nv

Mck

Pck
Pbc

(5f)

Dc =
∑

k∈Nv

Dck

Pck
Pbc

(5g)

It should be noted that the Pgi/Pbg and Pci/Pbc terms in (5c)-
(5g) come from per unit normalization, with Pbc being the base
power of all converter units. The expressions in (5a) and (5b)
indicate that the emulated inertia and damping through VSM,



as well as the droop control gains, contribute proportionally
to the overall inertia and damping of the system.

Assuming a stepwise disturbance in the electrical power
∆Pe(s) = −∆P/s, the time-domain expression for frequency
deviation (ω(t) ≡ ∆f(t)) can be derived as:

ω(t) = − ∆P

MTω2
n

(6)

− ∆P

Mωd
e−ζωnt

(
sin (ωdt)−

1

ωnT
sin (ωdt+ φ)

)

with the introduction of new variables

ωd = ωn
√

1− ζ2 , φ = sin−1
(√

1− ζ2
)

(7)

The time instance of frequency nadir (tm) can be determined
by observing the RoCoF, i.e., finding the instance at which the
derivative of the frequency is equal to zero:

ω̇(tm) = 0 7−→ tm =
1

ωd
tan−1

(
ωd

ζωn − T−1

)
(8)

Substituting tm into (6) and conducting a set of mathematical
transformations yields the value of frequency nadir as:

ωmax = − ∆P

D +Rg

(
1 +

√
T (Rg − Fg)

M
e−ζωntm

)
(9)

The maximum RoCoF occurs at tr = 0+ and is equal to

ω̇max = ω̇(tr) = −∆P

M
(10)

By analyzing expressions (9)-(10)1 we can conclude that the
two frequency metrics of interest (nadir and RoCoF) are
directly dependent on total inertia and damping constants,
both of which can be regulated through adaptive VSM control
gains: RoCoF explicitly as ω̇max ∼M−1, and nadir through a
highly non-linear function ωmax = fω (M,D) given in (9).

III. ADAPTIVE VIRTUAL SYNCHRONOUS MACHINE

A. Non-linear System Model

After the disturbance has been applied, i.e., ∀t ∈ [0+,+∞)
∆P can be considered a constant, thus transforming (3) into
the following expression:

ω̈ = −2ζωnω̇ − ω2
nω +

∆P

MT
(11)

Combining (4) and (11) yields a state-space representation of
the form:

[
ω̇
ω̈

]
=

[
0 I

−D+Rg

MT −( 1
T +

D+Fg

M )

] [
ω
ω̇

]
+

[
0

∆P
TM

]
(12)

with x =
[
ω ω̇

]T
and x0 =

[
0 ω̇(0+)

]T
being the state

vector and respective initial condition.

1The “max” term denotes the maximum absolute value of the deviation.
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Fig. 2: State feedback control for adaptive VSM approach.

Let us now consider controlling the total inertia and damp-
ing of the system depicted in Fig. 2 by regulating the convert-
ers’ VSM parameters through a state feedback control, i.e.,
[
M
D

]

︸ ︷︷ ︸
u

=

[
M∗

D∗

]

︸ ︷︷ ︸
u∗

+

[
∆M
∆D

]

︸ ︷︷ ︸
∆u

=

[
M∗

D∗

]
−
[
Km K̂m

Kd K̂d

]

︸ ︷︷ ︸
K

[
ω
ω̇

]

︸︷︷︸
x

(13)

where M∗ and D∗ are the total inertia and damping constants
of the system before the disturbance; (Km, K̂m) and (Kd, K̂d)
represent the proportional feedback control gains for inertia
and damping, respectively. It can be computed from (12)-(13)
that such system would yield the following steady-state point:

ẋ = 0 7−→ xss = [ωss, ω̇ss]
T

=
[

∆P
D∗+Rg

0
]T

(14)

The main goal of the work presented in this paper is to
obtain the control gains K that would guarantee an optimal
balance between the frequency regulation and the required
energy use via adaptive control. Such balance can be achieved
through the minimization of a quadratic objective function,
with separate cost terms for frequency deviation (Q) and
overall control effort (R), i.e.

min
x,u

∫ ∞

0

(
xTQx+ uTRu

)
dt (15)

while simultaneously subjected to the system model con-
straints in (12) and the control input in (13). This problem
formulation resembles the one of a Linear-Quadratic Regulator
(LQR), which requires a linear system model and a state
feedback control in order to compute the optimal control gains.
Therefore, we need to linearize the system in (12) around an
adequate linearization point. Intuitively this should be one of
the two equilibrium points, x∗1 =

[
0 0

]T
or x∗2 =

[
ωss 0

]T
,

before and after the disturbance. However, since ∂f
∂D

∣∣∣
x∗
1 ,u

∗
= 0

and ∂f
∂M

∣∣∣
x∗
2 ,u

∗
= 0, a single linearization does not provide a

model that could sufficiently capture the adaptive nature of
the proposed controller. Furthermore, an LQR based on the
system linearized around a non-equilibrium operating point
would tend to drive the system back to the same unstable point,
which is not desirable. Therefore, we propose two different
linearization and control design methods in order to implement
a multi-LQR scheme and overcome this issue.

B. Method A: Two Independent Controllers

The first method is based on the assumption that the system
damping has little effect in the initial stages of a frequency



response, whereas the system inertia has low impact in the later
stages. These two phases are separated by the time instance of
reaching the frequency nadir, thus dividing the response time
into [0, tm) and [tm,+∞), with uM = M and uD = D being
the only control input, respectively.

The initial stage of the system response, i.e., t ∈ [0, tm),
can be characterized by linearizing the system in (12) around
(x∗1, u

∗
M ), while assuming a constant D = D∗ throughout the

sequence, which yields:
[
ω̇
ω̈

]

︸︷︷︸
ẋM

=

[
0 1

−D
∗+Rg

TM∗ −(
D∗+Fg

M∗ + 1
T )

]

︸ ︷︷ ︸
A

[
ω
ω̇

]
+

[
0
−∆P
TM∗2

]

︸ ︷︷ ︸
BM

∆M

[
ω0

ω̇0

]

︸ ︷︷ ︸
xM0

=

[
0

ω̇(0+)

]
, ∆M = −

[
Km K̂m

]
︸ ︷︷ ︸

KM

[
ω
ω̇

]
(16)

Similarly, the period t ∈ [tm,+∞) is described using the lin-
earization around (x∗2, u

∗
D) and a no-feedback inertia control,

resulting in:
[

˙̂ω
ω̈

]

︸︷︷︸
ẋD

=

[
0 1

−D
∗+Rg

TM∗ −(
D∗+Fg

M∗ + 1
T )

]

︸ ︷︷ ︸
A

[
ω̂
ω̇

]
+

[
0
−ωss

TM∗

]

︸ ︷︷ ︸
BD

∆D

[
ω̂0

ω̇0

]

︸ ︷︷ ︸
xD0

=

[
ωm − ωss

0

]
, ∆D = −

[
Kd K̂d

]
︸ ︷︷ ︸

KD

[
ω̂
ω̇

]
(17)

where ωm = ω(tm) and ω̂ = ω − ωss.
In order to achieve a trade-off between the frequency

response and the control effort, the following general form of a
two-fold optimization problem is used to derive the controllers:

min
xi,ui

∫ t2,i

t1,i

(
xTi Qxi + ∆uTi Ri∆ui

)
dt (18a)

s.t ẋi = Axi +Bi∆ui (18b)
∆ui = −Kixi (18c)

with Q = diag(Q1, Q2) and index i ∈ {M,D} denoting the
corresponding multi-LQR formulation, from now on termed
M-LQR and D-LQR respectively. The two controllers have
different state space models, state vectors and control inputs
but also the weight R in the objective function corresponding
to the control effort penalty differs. This allows to distinguish
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Cost Factors
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Control Design
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Fig. 3: Multi-LQR control design in Method A.
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Fig. 4: Application of a multi-LQR scheme in Method A.

between the different nature of energy utilization in the two
stages. Furthermore, the integral spans over different time
intervals, corresponding to the aforementioned two stages of
the frequency response. For a given set of cost penalties
(Q,R) the optimization in (18) yields the optimal feedback
control gains K∗i = R−1

i BTi Pi, where Pi is the solution to
the following algebraic Riccati equation:

ATPi + PiA− PiBiR−1
i BTi Pi +Q = 0 (19)

The two control designs can be completed independently, as
shown in Fig. 3, with the control effort factorization providing
the cost penalties RD and RM under the following ratio:

RM = R , RD = R

(
∆Mmax

∆Dmax

)2

≈ R
(
ωmax

ω̇max

)2

(20)

The approximation is based on equating the energy content
of the two controllers during peak power injection, which
according to the dynamics of the swing equation corresponds
to the ratio of frequency nadir and maximum RoCoF.

The application of a multi-LQR scheme in Method A con-
sists of a continuous alternation between the two algorithms,
with D-LQR being initialized at the instance of frequency
nadir (% = 1) and remaining active until the frequency sta-
bilization threshold (εω) has been met. As soon as the system
reaches equilibrium the M-LQR control mode is employed
(% = 0), as depicted in Fig. 4, where the blue and red dots
refer to the respective linearization points. The idle mode
corresponds to a pre-disturbance period, where the control
gains are kept the same as for the previous M-LQR sequence.
Once the fault is detected through a RoCoF threshold (εω) the
new KM gains are computed and the active M-LQR mode is
initiated. In order to generate an adequate trigger signal (%),
the signal logic scheme incorporates three main circuits as

Reset
circuit

d
dt
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>

>

>
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Fig. 5: Signal logic scheme for LQR detection in Method A.



presented in Fig. 5: (i) a fault detection block that employs a
RoCoF threshold (εω) to ignite the active M-LQR mode; (ii)
a D-LQR trigger signal using zero-crossing of RoCoF; and
(iii) a block/reset signal based on frequency stabilization (idle
M-LQR trigger).

C. Method B: Two Dependent Controllers

The second approach attempts to fully capture the properties
of both control inputs by designing a cooperative control
of the two LQR-based controllers. This is achieved through
an iterative exchange of optimal control gains between the
two consecutive LQR computations visualized in Fig. 6. The
linearization practice is kept the same as for Method A.

Let us start with the M-LQR design. The same notation as
in Section II-B is used. Unlike the previous method where
we assumed D = D∗, here we include the adaptive damping
control from (17) of the form:

D = D(ω, ω̇) = D∗ −
[
Kd K̂d

]
︸ ︷︷ ︸

KD

[
ω − ωss

ω̇

]
(21)

with KD being the known parameter obtained in the previous
update of D-LQR. The system in (12) can now be transformed
as follows:
[
ω̇
ω̈

]
=

[
0 1

−(
D(ω,ω̇)+Rg

TM ) −(
D(ω,ω̇)+Fg

M + 1
T )

] [
ω
ω̇

]

+

[
0

∆P
TM

]
= f(ω, ω̇,M,D(ω, ω̇))

(22)
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which after the linearization around (x∗1, u
∗
M ) yields:

[
ω̇
ω̈

]

︸︷︷︸
ẋM

=

[
0 1

−D
∗+Rg+Kdωss

TM∗ −(
(D∗+Fg)+Kdωss

M∗ + 1
T )

]

︸ ︷︷ ︸
AM

[
ω
ω̇

]

+

[
0

− ∆P
TM∗2

]

︸ ︷︷ ︸
BM

∆M = AM (Kd)

[
ω
ω̇

]
+BM∆M (23)

Similarly, we can assume KM as a known parameter and
define the adaptive inertia control for D-LQR as

M = M(ω, ω̇) = M∗ −
[
Km K̂m

]
︸ ︷︷ ︸

KM

[
ω
ω̇

]
(24)

which gives us a closed-loop, non-linear system of the form:
[
ω̇
ω̈

]
=

[
0 1

− D+Rg

TM(ω,ω̇) −(
D+Fg

M(ω,ω̇) + 1
T )

] [
ω
ω̇

]

+

[
0

∆P
TM(ω,ω̇)

]
= f(ω, ω̇,M(ω, ω̇), D)

(25)

Finally, the expression for the linearized model around
(x∗2, u

∗
D) can be computed as:

[
˙̂ω
ω̈

]
=

[
0 1

−D
∗+Rg

κT −(
D∗+Fg

κ + 1
T )

]

︸ ︷︷ ︸
AD

[
ω̂
ω̇

]
+

[
0
−ωss

κT

]

︸ ︷︷ ︸
BD

∆D

= AD(Km)

[
ω̂
ω̇

]
+BD(Km)∆D (26)

where κ = M∗ −Kmωss.
Understandably, the multi-LQR optimization problem in

Method B resembles the one in (18), with the two main
exceptions: (i) both LQRs are infinite, i.e., [t1,i, t2,i] =
[0,+∞); and (ii) the state-space model in (18b) is replaced
with ẋi = Aixi + Bi∆ui. However, due to the numerical
interdependence between the matrices AM (Kd), AD(Km)
and BD(Km), the two LQR systems can not be solved
independently as in Method A. Instead, they are iterated until
convergence between the consecutive steps is achieved, as

Algorithm 1 Iterative computation of optimal control gains

1: Set k = 0 and ε = 0
2: Initialize system in open-loop . K

(0)
M = K

(0)
D = 0

3: while ε > ε or k = 0 do
4: k = k + 1
5: Run M -LQR = f

(
K

(k−1)
D

)
. derive K(k)

M

6: Run D-LQR = f
(
K

(k)
M

)
. derive K(k)

D

7: Compute error terms . εM =
∣∣∣K(k)

M −K(k−1)
M

∣∣∣
. εD =

∣∣∣K(k)
D −K(k−1)

D

∣∣∣
8: Determine convergence error . ε = εM + εD
9: end while

10: Return K(k)
M ,K

(k)
D
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proposed in Algorithm 1. As a result, a single, uniform control
is obtained, which simplifies the implementation compared to
the previous method.

The performance of Algorithm 1 is presented in Fig. 7
which shows the iterative progress of the optimal control
gain computation. Due to the complexity of a closed-form
solution of the combined Riccati equations, the possibility
for deriving an analytic convergence criterion is restricted.
However, the fast convergence can be justified by analyzing
the mathematical properties of the control design in Method
B. Since the algorithm is initialized at K(0)

M = K
(0)
D = 0, the

computation of the first M-LQR is done inefficiently without
inclusion of adaptive damping. With adaptive inertia control
in place, the damping feedback can be reasonably determined
for k = 1. The inaccuracy of K̂

(1)
m and K̂

(1)
d is a sole

consequence of the linearization, i.e., the fact that the LQR
design stabilizes the inverter around the equilibrium where
the influence of ω̇ is negligible. This problem is resolved in
the second iteration, as both K̂(2)

m and K̂(2)
d are appropriately

readjusted, with feedback gains corresponding to ω remaining
constant. Therefore, the convergence condition is guaranteed
within 3 iterations. This sequence also explains the gradual
reduction of convergence error: the first iteration computes all
four control gains initially set to zero, whereas the second one
only tunes the two gains corresponding to the state feedback
ω̇.

D. Parametrization and Implementation

The expression in (19) implies that the selection of cost fac-
tors Q and R comprehensively determines the optimal control
gains, thus highlighting the importance of cost parametriza-
tion. One of the most common (initial) LQR tuning approaches
is to consider all objective costs equally [18], i.e., to select the
respective weights such that

Q1(ωmax)2 = Q2(ω̇max)2 = Ri(∆ui,max)2 (27)

This is usually achieved by fixing one penalty factor, in our
case Q1 = (ωmax)−2 and Q2 = (ω̇max)−2, and adjusting
the cost of control accordingly. Since the optimal selection
of (∆Mmax,∆Dmax) is unclear, we propose an iterative pro-
cedure within the optimal control design scheme, as shown
in Fig. 8. Starting from R(0) ≈ 0, the algorithm yields a
maximum penalty and thus a minimum control effort, that
still ensures maintaining the frequency and RoCoF within the
given bounds. As a result, a uniform 1-D look-up table of

Disturbance
Uniform system

frequency dynamics

Stop
Within

frequency
limits?

Adaptive
VSM

K∗ = K(i−1)
i = i + 1

R(i) = R(i−1) + ∆R

Penalties

Optimal Control Design

min
x,u

∫∞
0

(
xTQx+ uTRu

)
dt

s.t. ẋ = Ax + Bu
u = −Kx

————————————
Multi-LQR Approach

[ωmax, ω̇max]

∆P

no

yes

R(i)

[Q1, Q2]

K(i)

[
M

(i)
c , D

(i)
c

]

Fig. 8: System-level control design algorithm.

the form K∗ = TPK(∆P ) is generated, which provides the
optimal feedback gain scheduling for any given system-level
disturbance ∆P .

E. Stability Assessment

In this section, we focus on deriving the sufficient stability
conditions for adaptive VSM design. Based on the Lyapunov
stability theorem, and assuming a justifiable approximation of
the form RMKM ≈ RDKD, the asymptotic stability of the
system is guaranteed under the following tuning condition:

M∗

T
+D∗ + Fg <

M∗ −
√
M∗2 − 4K̂m∆P

4K̂m/Km

(28)

Proof. We start the proof by finding an appropriate candidate
Lyapunov function of a nonlinear open-loop system. Similar
to the stability analysis of a synchronous generator in [19], we
calculate the respective energy function by neglecting the ω̇
term associated to damping in the second equation of (12), and
multiply the whole expression with Mω̇ in order to express
energy:

Mω̇ω̈ +
1

T
((D +Rg)ω −∆P )ω̇ = 0 (29)

Integrating the product from the first equilibrium point x∗1
to any point on the system transient trajectory yields the
following Lyapunov function:

V = Ek + Ep

=

∫ ω̇

0

Mω̇dω̇ +
1

T

∫ ω

ωss

((D +Rg)ω −∆P )dω (30)

=
1

2
Mω̇2 − 1

T

[
∆P (ω − ωss)−

1

2
(D +Rg)(ω

2 − ωss2)

]



where V (ω, ω̇) represents the transient energy of the system
in (ω, ω̇) coordinates after a step disturbance ∆P .

Let us now consider the adaptive approach with M(ω, ω̇)
and D(ω, ω̇) being functions of state variables through VSM
feedback control described in (13). By analyzing the gradient
∇V of the proposed Lyapunov function we can determine its
stationary points:
[
∂V
∂ω
∂V
∂ω̇

]
=

[
1
2
∂M
∂ω ω̇

2 − 1
T

(
∆P − 1

2
∂D
∂ω ∆ω2 − ω(D +Rg)

)

1
2
∂M
∂ω̇ ω̇

2 +Mω̇ + 1
2T

∂D
∂ω̇ ∆ω2

]

where ∆ω2 ≡ ω2 − ω2
ss. It can easily be shown that the

proposed Lyapunov function has a stationary point at the
system equilibrium x∗2, i.e., ∇V (x∗2) = 0, which satisfies the
first condition of Lyapunov stability. The second condition
states that it must be positive definite in the vicinity of the
equilibrium point. This can be verified using the Hessian
matrix H
[
∂2V
∂ω2

∂2V
∂ω∂ω̇

∂2V
∂ω̇∂ω

∂2V
∂ω̇2

]
=

[
1
T (D +Rg − 2Kdω) −Kmω̇

−Kmω̇ M − 2K̂mω̇

]

which yields the following expression at the aforementioned
equilibrium x∗2:

H(x∗2) =

[
1
T (D +Rg − 2κ

D∗+Rg
) 0

0 M

]
(31)

Here, κ > 0 denotes the product Kd∆P , always positive by
the nature of our control design. Having in mind that M , D
and Rg are also positive, according to Sylvester’s theorem
H(x∗2) � 0 holds, and thus V is a valid Lyapunov candidate
function.

In order to guarantee asymptotic stability, V̇ = ∂V/∂t has
to be positive ∀t ∈ [0,∞):

V̇ =
∂V

∂ω̇

∂ω̇

∂t
+
∂V

∂ω

∂ω

∂t
+
∂V

∂M

∂M

∂t
+
∂V

∂D

∂D

∂t
(32)

= −(
M

T
+D + Fg)ω̇

2 +
1

2

∂M

∂t
ω̇2

︸ ︷︷ ︸
νM

+
1

2T

∂D

∂t
(ω2 − ω2

ss)
︸ ︷︷ ︸

νD

Let us now compare the last two terms of (32) by considering
their ratio

νM
νD

=
T ∂M

∂t ω̇
2

∂D
∂t (ω2 − ω2

ss)
=

T ω̇2

ω2 − ω2
ss

KM ◦K−1
D (33)

Based on the LQR design and respective cost factor selection,
we can assume the following approximation2:

KM ◦K−1
D ≈ RD

RM
=

(
ωmax

ω̇max

)2

(34)

and hence the ratio in (33) can be transformed into

νM
νD
≈ TRDω̇

2

RM (ω2 − ω2
ss)

= T
ω2

maxω̇
2

ω̇2
max(ω2 − ω2

ss)︸ ︷︷ ︸
σ

(35)

2Symbol ◦ denotes the element-wise Schur product.

We can observe that σ > 1 for high values of νM and νD
during the initial transients, whereas νM ≈ νD = 0 in steady
state. Therefore, it is valid to assume νM + νD ≈ νM and
neglect the last term in (32), leading to the following condition
for system stability:

M

T
+D + Fg >

1

2

∂M

∂t
=

1

2
(−Kmω̇ − K̂mω̈) (36)

with the left hand side lower bounded by

M

T
+D + Fg >

M∗

T
+D∗ + Fg (37)

As for the right hand side of (36), we know that both ω̇ and
ω̈ are decaying oscillations, as well as that during the initial
stages of the response, when ∂M

∂t is relatively large, −Kmω̇ >

0 and −K̂mω̈ < 0. Hence, we could neglect the term −K̂mω̈
and upper bound the right hand side:

−1

2
Kmω̇max = −1

2
Kmω̇(0) >

1

2
(−Kmω̇ − K̂mω̈) (38)

From (36)-(38), a sufficient condition for asymptotic stability
is derived as follows:

M∗

T
+D∗ + Fg > −

1

2
Kmω̇max (39)

where

ω̇max =
M∗ −

√
M∗2 − 4K̂m∆P

2K̂m

(40)

Combining (39) and (40) yields the stability condition in (28),
which concludes the proof. �

The aforementioned condition also has a physical inter-
pretation. Since M∗/T term corresponds to damping, this
stability margin indicates that the system damping has to be
higher than the maximum rate of change of inertia. In other
words, the proportional inertia feedback gains (Km, K̂m) are
bounded by the shaded stability region depicted in Fig. 9a.
Furthermore, as a proof of concept, the proposed Lyapunov
function is analyzed based on the respective simulation results.
The results shown in Fig. 9b indicate that V (ω, ω̇) remains
positive, with transient energy trajectory preserving a decaying
trend throughout the disturbance period and converging to
zero, thus verifying the system stability. Furthermore, we can
observe that the final equilibrium point is x∗2, as previously
discussed.

It should be noted that the suggested stability assessment
applies only to Method B, since M and D gains vary discon-
tinuously in Method A due to explicit switching. However, this
can be resolved by approximating the derivative terms ∂M/∂t
and ∂D/∂t by their average values at the point of switching
instance and conducting a similar analysis. As we consider
Method B to be a more sophisticated and efficient approach
of the two, the other stability proof is omitted for brevity.
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Fig. 9: Stability analysis of the adaptive VSM control design:
(a) stability region of inertia feedback gains; (b) transient
energy trajectory after a step disturbance.

F. Multi-Inverter Extension

In order to implement the aforementioned adaptive control
design on a large-scale, multi-inverter system, the information
of the global power imbalance (∆P ) should be extracted from
a locally measured disturbance (∆Pci) at the terminal of each
VSM unit i ∈ Nv . Such signal can be obtained as follows:

∆P = γfnRci
∆Pci
Pci

= γfn (DciPci)
−1

︸ ︷︷ ︸
ψi

∆Pci

γ = DlPl0 +
1

fn

∑

i∈Nc

Pci
Rci

(41)

with fn denoting the nominal frequency and γ mimicking the
traditional composite frequency response characteristic (β) of
synchronous generators in a low-inertia system; Pl0 and Dl

are the load power at nominal frequency and its sensitivity
to frequency changes, whereas Rci = D−1

ci is the respective
droop equivalent of a VSM-based controller [16]. The tradi-
tional generators are omitted from the computation of γ due
to high time constants and a significantly slower frequency
regulation compared to VSCs. Once ∆P is determined, the

γfnψi∆Pci TPK λi K∗
ci

∆P K∗

Fig. 10: Individual control scheme for optimal gain selection.

optimal feedback gain of the combined VSM control can be
obtained from the look-up table, as shown in Fig. 10. A sharing
property of the control effort is achieved via proportional
scaling factors of the form λi = Pci/

∑
i Pci , assuming

proportional participation.

IV. MODELING AND CONTROL DESIGN

The proposed adaptive VSM controller is implemented
within a state-of-the-art VSC control scheme previously de-
scribed in [20], where the outer control loop consists of active
and reactive power controllers providing the output voltage
angle and magnitude reference by adjusting the predefined
setpoints (x∗) according to a measured power imbalance:

ω̇ci =
1

Mci

(p∗ci − pci)−
1

Mci

Dci(ωci − ω∗ci), ∀i ∈ Nv

ωcj = ω∗cj +Rpcj (p∗cj −
ωz

ωz + s
pcj ), ∀j ∈ Nd (42)

vck = v∗ck +Rqck(q∗ck −
ωz

ωz + s
qck), ∀k ∈ Nc

with Rpcj and Rqck denoting the active and reactive power droop
gains, ωz representing the LPF cut-off frequency, Mci and
Dci being the adaptive control gains, and θ̇ck = ωckωn. The
first two expressions indicate the difference between the VSM
and droop-based inverters. Subsequently, the reference voltage
vector signal (vck∠θck) is passed through a virtual impedance
block, as well as the inner control loop consisting of cascaded
voltage and current controllers. The output is combined with
the DC-side voltage in order to generate the modulation signal
m. In order to detect the system frequency at the connection
terminal, a PLL-based synchronization unit is included in the
model. However, for the purposes of a grid-forming converter
this unit is bypassed via ω∗ = ωn. The complete mathematical
model consists of 13 states and is implemented in per unit.
More details on the overall converter control structure and
employed parametrization can be found in [15], [16], [20].

For synchronous generators, we consider a traditional model
equipped with a prime mover and a TGOV1 governor. Further-
more, the automatic voltage regulator based on a simplified
excitation system SEXS is incorporated, together with a PSS1A
power system stabilizer [21]. Internal machine dynamics are
characterized by the transients in the rotor circuits described
through flux linkage, as transients in the stator windings
decay rapidly and can thus be neglected. The inclusion of
stator circuit balance completes the set of differential-algebraic
equations, which combined with 6 controller states and swing
equation dynamics yields a standard 12th order system. For
more details regarding the generator modeling and internal
parameter computation, we refer the reader to [22].

V. RESULTS

As proof of concept, we test the proposed method on a
modified version of a well investigated Kundur’s 2-area system
shown in Fig. 11, consisting of 3 areas and 6 generators. The
same test case has been previously used in several studies on
placement and effects of inertia and damping in low-inertia
systems [23], [24]. Furthermore, we consider a scenario where
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Fig. 11: Topology of the investigated 3-area test system: the
converter-based generation is placed at nodes 2, 6 and 10.

three traditional generators are replaced with converter-based
units. In order to validate the uniform frequency formulation
from Section II, a loss of synchronous generator at node 5 is
simulated using a detailed EMT model developed in MATLAB
Simulink and compared against the analytic formulation in (6).
Understandably, such contingency leads to unacceptable fre-
quency excursion under the open-loop VSM control, indicated
by the frequency nadir of ≈ 0.7 Hz in Fig. 12. Nonetheless,
the resulting response verifies the accuracy of the proposed
uniform approach.

Having in mind that the adaptive control gains are computed
offline, a risk of inadequate system information pertains to
overall error propagation, especially regarding the frequency
metric expressions in (6)-(10). This potential issue is in-
vestigated using a rigorous parametric sensitivity analysis,
with all relevant unit parameters arbitrarily selected within a
[10− 500] % range of the nominal values. We study a system
consisted of Ng = 1000 synchronous and inverter-based
generators, and consider Ns = 105 different configuration
scenarios. In each scenario, a set of 100 units is randomly
removed in order to account for the generators that could
potentially be offline. Subsequently, the frequency nadir is
analytically computed and compared to its respective value in
the full system. The distribution of the computational error
shown in Fig. 13 verifies the robustness of the modeling
approach, as the worst case mismatch is kept below 1 %, and
95 % of the scenario set is within a 0.5 % error range. For the
purposes of our control design, a small margin corresponding
to the maximum computational error is added to ωmax and ω̇max
terms, such that the frequency response of the system always

0 5 10 15

49.6

49.8

50

t [s]

f
[H

z]

Individual generator frequencies

Uniform frequency response

Fig. 12: Frequency response after a 250 MW load increase.

−1 −0.5 0 0.5 1
0

5

10

15

Computational error [%]

P
ro
b
a
b
il
it
y
[%

]

Fig. 13: Error distribution of frequency nadir computation.

meets the predefined ENTSO-E crtieria.
In contrast to open-loop, the adaptive VSM schemes fulfill

their purpose of alleviating the disturbance and improve the
frequency response in terms of nadir and maximum RoCoF, as
illustrated in Fig. 14. The impact of the cost penalty selection
is reflected in the frequency nadir reaching the prescribed
ENTSO-E under-frequency load shedding threshold of 0.5 Hz.
Method A achieves a marginally faster convergence rate due
to an explicit switch from M-LQR to D-LQR control mode
at the instance of reaching the frequency nadir, which is also
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Fig. 14: System response under different VSM control designs:
(i) frequency; (ii) RoCoF; (iii) inertia; (iv) damping.



the reason for the discontinuity in the RoCoF curve due to
a sudden step change in M . On the contrary, the additional
damping during the initial stages of the response in Method
B aids the control of the frequency nadir, thus activating less
inertia compared to the previous method. This however leads
to a slightly higher maximum RoCoF, which is a well-justified
trade-off considering that the RoCoF is significantly below
the predefined limit of 1 Hz/s. Nonetheless, the characteristics
are reversed in the second stage, as more inertia and less
damping is provided by Method B than by Method A. Another
interesting observation is the initial undershoot of damping in
Method B; a consequence of the D-LQR trying to effectively
reach its linearization point x∗2. This “non-minimum phase”
characteristic occurs however only for very large disturbances,
with the steady-state frequency well below the 50 Hz mark.

The activation of M and D reveals the distinctive nature of
the two algorithms. Method A is restricted solely to adaptive
inertia as a mean of frequency regulation during the initial
response (M-LQR), which directly acts on RoCoF through the
explicit Mω̇ term. The effectiveness of such an approach is
however limited, since the impact of inertia decays over time,
together with ω̇. As a result, the inertia gain is overdimen-
sioned, leading to high depletion of energy and a noticeable
spike at the switching instance between two LQRs. In contrast,
the combined effort of inertia and damping in Method B
achieves a qualitatively similar system performance with a
more natural frequency response and less energy consumption,
as indicated in Fig. 15. We therefore conclude that Method B
is both a more efficient and practical approach for adaptive
VSM design.

Some insightful conclusions regarding the two control con-
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Fig. 15: Energy utilization for containing a loss of generator:
(a) components of the additional control effort; (b) total energy
content.
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Fig. 16: System frequency response to a loss of synchronous
generator in the detailed EMT model: Method B vs. open-loop.

cepts can be drawn from the energy content of the control
effort, with respective energy terms computed as ∆EM =∫

∆Mω̇dt and ∆ED =
∫

∆Dωdt. First of all, it clarifies
the decision in the latter approach to compensate inertia with
damping during high RoCoF instances, since the ∆EM term
would have a predominant impact on the total costs. Moreover,
it can be observed that Method B reduces the total energy use
of the adaptive control by ≈ 12.5 %. The increase in total
battery utilization compared to the open-loop VSM can be jus-
tified by the small size of the test system that makes it highly
vulnerable to a loss of generator which accounts for 20 % of
total base power. Nonetheless, this is just a fraction (≈ 1 %) of
the total energy capacity of a 100 MW/129 MWh lithium-ion
Hornsdale Power Reserve battery in South Australia, better
known as “Tesla Big Battery”, which was recently installed
and successfully used for similar fast regulation purposes [25].
Considering that the installed power of the aforementioned
system is an order of magnitude higher than in the observed
test case, the application of our LQR control is well justified.

Finally, the proposed controllers are incorporated into the
detailed EMT model and analyzed on the same test case. For
simplicity, only the results of Method B design are presented.
The system frequency response depicted in Fig. 16 validates
the control accuracy, as the frequency nadir is kept within the
predefined bounds unlike for the open-loop approach. It also
verifies that the adaptive VSM control and the accompanying
signal processing do not interfere with the cascaded inner
loops, nor with the complex synchronous generator controllers.

VI. CONCLUSION

The presented paper introduces a novel distributed VSM
concept for converters in power systems with high shares of
renewable resources. An LQR-based optimal feedback gain is
computed to adaptively adjust the emulated inertia and damp-
ing constants according to the frequency disturbance in the
system, while simultaneously preserving a trade-off between
the critical frequency limits and the required control effort.
Two control designs have been proposed and compared against
the open-loop concept, indicating an overall better frequency
response with a reasonable increase in energy consumption.
Due to its conceptually superior design, the iterative LQR
algorithm in Method B is determined to be the more efficient
and practical control concept of the two. Furthermore, the
adaptive VSM models are included into a detailed converter



control scheme and verified through a multi-machine EMT
simulation, showing that such control design can be employed
in a real-world application.
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