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Abstract—This paper presents a data-driven two-stage distri-
butionally robust planning tool for sustainable microgrids under
the uncertainty of load and power generation of renewable energy
sources (RES) during the planning horizon. In the proposed
two-stage planning tool, the first-stage investment variables
are considered as here-and-now decisions and the second-stage
operation variables are considered as wait-and-see decisions. In
practice, it is hard to obtain the true probability distribution
of the uncertain parameters. Therefore, a Wasserstein metric-
based ambiguity set is presented in this paper to characterize
the uncertainty of load and power generation of RES without
any presumption on their true probability distributions. In the
proposed data-driven ambiguity set, the empirical distributions of
historical load and power generation of RES are considered as the
center of the Wasserstein ball. Since the proposed distributionally
robust planning tool is intractable and it cannot be solved directly,
duality theory is used to come up with a tractable mixed-integer
linear (MILP) counterpart. The proposed model is tested on a
33-bus distribution network and its effectiveness is showcased
under different conditions.

NOMENCLATURE

Indices
b Index of buses where b′ and b′′ represent indices for

buses before and after bus b, respectively.
d Index of loads.
g Index of generators.
t Index of hours.
Parameters
cp Cost of penalization for non-supplied load ($/kWh).
ebt/e

s
t Buying/selling price of electricity from/to the bulk

upstream network at hour t ($/kWh).
fd Power factor of load d.
ibb′′ Annualized investment/reinforcement cost of line con-

necting buses (b, b′′) ($).
ig Annualized investment cost of generator g ($).
ogt Operation cost of generator g at hour t ($/kWh).
p̄dt Nominal estimate of p̃dt ($/kWh).
pmax
b′b Maximum active power flow from bus b′ to bus b

(kW).
pmax
g Maximum active power of generator g (kW).
pmax
gt Nominal estimate of p̃max

gt (kW).
qmax
b′b Maximum reactive power flow from bus b′ to bus b

(kVAr).
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qmax
g Maximum reactive power of generator g (kVAr).
rb′b Resistance of line connecting buses (b′, b) (ohm).
vmax Maximum permitted voltage amplitude (V).
vmin Minimum permitted voltage amplitude (V).
xb′b Reactance of line connecting buses (b′, b) (ohm).
α0
bb′′y Initial connection status of buses (b, b′′) (i.e., 1/0:

connected/disconnected).
Sets
ΩB Set of buses where ΩBb indicates set of buses after

and connected to bus b.
ΩD Set of loads where ΩDb indicates set of loads con-

nected to bus b.
ΩL Set of lines connecting buses.
ΩM Set of micro-turbine generators where ΩMb indicates

set of micro-turbine generators connected to bus b.
ΩR Set of renewable generators where ΩRb indicates set

of renewable generators connected to bus b.
ΩT Set of hours.
Variables
p̃dt Uncertain load d at hour t (kW).
pb′bt Active power flow from bus b′ to bus b at hour t (kW).
pbt/p

s
t Active power bought/sold from/to the bulk upstream

network at hour t (kW).
pgt Active power generation of generator g at hour t (kW).
p̃max
gt Uncertain maximum active power generation of gen-

erator g at hour t (kW).
qb′bt Reactive power flow from bus b′ to bus b at hour t

(kVAr).
qgt Reactive power generation of generator g at hour t

(kVAr).
udt Not-supplied value of load d at hour t (kW).
vbt Voltage amplitude of bus b at hour t (V).
αbb′′ Investment/reinforcement status of line connecting

buses (b, b′′) (i.e., 1/0: built/non-built).
αg Investment status of generator g (i.e., 1/0: built/non-

built).

I. INTRODUCTION

The concept of microgrid (MG) has been firstly presented
in [1] as a solution to address different challenges of inte-
grating distributed energy resources into the power system. In
general, MG refers to a low-voltage electrical network with
small-scale producers and consumers that operate as a self-
sufficient controllable system. Although fossil-fuel-based gen-
eration technologies with competitive installation costs have



been the predominant choice to supply electricity in remote
areas, the proven techno-economic feasibility and practicality
of sustainable generation technologies (e.g., wind turbines and
solar panels) have made them a priority in MGs [2]. Therefore,
efficient MG investment/reinforcement planning (MIRP) mod-
els are required for optimal investment/reinforcement in dif-
ferent generation technologies, e.g., renewable energy sources
(RES) and fossil-fuel ones, as well as distribution facilities.

In practice, MGs are subject to various uncertainties (i.e.,
load and power generation of RES) that affect the operational
feasibility of any investment plan. Accordingly, to characterize
these uncertainties and solve the MIRP problem, different non-
deterministic techniques have been introduced in the literature,
including robust optimization (RO) [3], [4] and stochastic
optimization (SO) [5], [6]. RO finds a solution that is optimal
under the worst-case realization of uncertain parameters while
SO finds a solution that is optimal on average for all scenarios
considered in the problem. On the one hand, RO needs less
historical data than SO to characterize uncertain parameters
[7]. On the other hand, optimal solutions of RO-based MIRP
models are more conservative than the optimal solutions of
SO-based ones. To remedy the aforementioned shortcomings
of RO and SO, and to combine their benefits, a data-driven
two-stage distributionally robust MIRP (DR-MIRP) model is
introduced in this paper under the uncertainty of loads and
power generations of RESs. The optimal solution in the DR-
MIRP model is obtained under the worst-case probability
distributions of the uncertain parameters, rather than their
worst-case realizations similarly to [8], where the investment
variables are considered as here-and-now decisions and oper-
ation variables are considered as wait-and-see decisions.

The main contributions of this paper can be summarized
as follows: (i) A data-driven two-stage distributionally robust
model is introduced for investment/reinforcement planning in
sustainable MGs under the uncertainty of loads and power
generations of RESs during a single-year planning horizon. To
the best of the authors’ knowledge, there is no similar data-
driven distributionally robust MG planning model in the liter-
ature; (ii) The uncertainty of loads and power generations of
RESs is characterized by a data-driven Wasserstein ambiguity
set where there is no presumption on true probability distri-
butions of uncertain parameters. Also, empirical distributions
pertaining to previous observations of uncertain parameters are
used to construct the data-driven Wasserstein-based ambiguity
set; (iii) A tractable mixed-integer linear programming (MILP)
counterpart for the proposed intractable DR-MIRP is presented
using the duality theory. Also, the conservatism of the optimal
solution can be adjusted by means of the confidence level of
the Wasserstein ambiguity set.

The rest of this paper is organized as follows. In Section
II, a deterministic formulation is presented for MG planning.
In Section III, first, the ambiguity set is introduced, second,
the distributionally robust formulation is presented for MG
planning, and then, its MILP counterpart is obtained by
using the duality theory. In Section IV, the proposed DR-
MIRP model is tested on a 33-bus distribution network under

different conditions. Finally, Section V concludes the paper.

II. DETERMINISTIC FORMULATION

The deterministic MIRP (D-MIRP) model is proposed in
this section where future profiles of loads and power genera-
tions of RESs is modeled by a representative operating day:

min
∑

(b,b′′)∈ΩL

(
ibb′′ ·αbb′′

365

)
+

∑
g∈{ΩM ,ΩR}

(
ig·αg
365

)
+

∑
g∈{ΩM ,ΩR}

∑
t∈ΩT

(ogt· pgt) +
∑
d∈ΩD

∑
t∈ΩT

(cp·udt)

+
∑
t∈ΩT

(
ebt · pbt − est · pst

) (1a)

s.t.
pb′bt +

∑
g∈{ΩMb ,ΩRb}

pgt =
∑

b′′∈ΩBb

pbb′′t+

∑
d∈ΩDb

(p̄dt − udt) b ∈ ΩB , t ∈ ΩT
(1b)

qb′bt +
∑

g∈ΩMb

qgt =
∑

b′′∈ΩBb

qbb′′t+

∑
d∈ΩDb

tan (arccos (fd)) · (p̄dt − udt) b ∈ ΩB , t ∈ ΩT
(1c)

vb′t − vbt = (rb′b · pb′bt + xb′b · qb′bt) b ∈ ΩB , t ∈ ΩT (1d)

− pmax
bb′′ ·

(
α0
bb′′ + αbb′′

)
≤ pbb′′t ≤ pmax

bb′′ ·
(
α0
bb′′ + αbb′′

)
(
b, b′′

)
∈ ΩL, t ∈ ΩT

(1e)

− qmax
bb′′ ·

(
α0
bb′′ + αbb′′

)
≤ qbb′′t ≤ qmax

bb′′ ·
(
α0
bb′′ + αbb′′

)
(
b, b′′

)
∈ ΩL, t ∈ ΩT

(1f)

p01t = pbt − pst t ∈ ΩT (1g)

0 ≤ pbt ; 0 ≤ pst t ∈ ΩT (1h)

0 ≤ pgt ≤ pmax
g · αg g ∈ ΩM , t ∈ ΩT (1i)

qmin
g · αg ≤ qgt ≤ qmax

g · αg g ∈ ΩM , t ∈ ΩT (1j)

0 ≤ pgt ≤ p̄max
gt · αg g ∈ ΩR, t ∈ ΩT (1k)

0 ≤ udt d ∈ ΩD, t ∈ ΩT (1l)

vmin ≤ vbt ≤ vmax b ∈ ΩB , t ∈ ΩT (1m)

v1t = 1 t ∈ ΩT (1n)

In (1a), the objective function calculates 1) the total costs of
investment/reinforcement in distribution and generation facili-
ties, 2) the total operation costs of micro-tribune and renewable
generators, 3) the total cost of not-supplied load, and 4) the
total operation costs of buying/selling electricity from/to the
bulk upstream network during the entire planning horizon.
Note that maintenance costs are included by aggregating in-
vestment and maintenance costs for all investment candidates.
In this paper, the linearized version of the DistFlow model is
used for the power flow equations [9], [10]. Also, a linearized



approximation of the quadratic power flow limits is considered
[11]. Therefore, constraints (1b) and (1c) ensure active and
reactive power balance at each bus, respectively. In addition,
constraint (1d) calculates the difference of voltage ampli-
tudes between two neighbor connected buses. Constraints (1e)
and (1f) limit the active and reactive power flows between
two neighbor connected buses, respectively. Constraint (1g)
stands for bought/sold electricity from/to the bulk upstream
network where constraint (1h) represents the non-negativity
of modeling variables for bought/soled electricity from/to the
bulk upstream network. Constraints (1i) and (1j) bound active
and reactive power generations of micro-turbine generators,
respectively. Moreover, constraint (1k) bounds active power
generations of renewable generators. Without loss of gener-
ality, a unity power factor is considered for all renewable
generators [12]. Constraint (1l) represents the non-negativity
of not-supplied loads. Constraint (1m) bounds the allowed
variation interval of the voltage amplitude at each bus where
constraint (1n) fixes the voltage amplitude of the bus that
connects the MG to the bulk upstream network on one. For
the sake of brevity, the proposed D-MIRP model in (1a)-(1n)
can be presented in compact matrix form as follows:

min
x

cᵀ · x+
∑
t∈ΩT

S(x, η̃t) (2)

where S(x, η̃) = min
yt
{dᵀ · yt|E(x) + F · yt ≥ G(x) · η̃t}

and η̃t represents the vector of uncertain parameters (i.e.,
p̃dt ∀d ∈ Ωd, ∀t ∈ ΩT and p̃max

gt ∀g ∈ ΩR, ∀t ∈ ΩT ) and it
is set on their nominal estimates η̄t (i.e., p̄dt ∀d ∈ Ωd, ∀t ∈ ΩT

and p̄max
gt ∀g ∈ ΩR, ∀t ∈ ΩT ) in the D-MIRP model. Also,

x and yt represent the vector of binary investment variables
and the vector of continuous operation variables at hour t,
respectively. Vectors of costs and requirements, i.e., c and d,
are indicated by lower-case letter while matrices of functions
and coefficients, i.e., E(x), F , and G(x), are indicated by
upper-case letters.

In summary, cᵀ · x corresponds to the first and second
terms of the objective function in (1a) while

∑
t∈ΩT S(x, η̃t)

corresponds to the third, forth, and fifth terms of the objective
function in (1a). Moreover, E(x)+F ·yt ≥ G(x)·η̃t corresponds
to all constraints (1b)-(1n).

III. DATA-DRIVEN DISTRIBUTIONALLY ROBUST
FORMULATION

In this section, first, the ambiguity set is introduced, second,
the distributionally robust model is presented, and then, its
MILP counterpart is obtained by using the duality theory.

A. Data-Driven Ambiguity Set

To find the exact solution of a distributionally robust
optimization, it is required to characterize exact probability
distributions of uncertain parameters [13]. In practice, it is
significantly hard to obtain the true probability distribution
P (if not impossible) as there is limited historical data for
uncertain parameters. However, the empirical distribution P̂Ns

obtained from a sample set with Ns previous observations
of uncertain parameters can be used to estimate the true

probability distribution P. The distance between the true dis-
tribution P and the empirical distribution P̂Ns

can be reduced
by increasing the number of historical data. In other words,
P̂Ns

tends toward P if Ns → ∞ [14]. Accordingly, a data-
driven approach based on previous observations of daily loads
and power generations of RESs is introduced to construct
the ambiguity set. In this paper, a Wasserstein metric-based
ambiguity set as a type of discrepancy-based ambiguity sets
is presented [15]. The main reasons are twofold. First, the
proposed model only needs baseline estimates of uncertain
parameters. Accordingly, it can be even used in areas with
limited historical data (e.g., rural areas in countries with a
low electrification rate). Second, the proposed model can be
recast into a tractable MILP problem.

The Wasserstein metric distW (Pa,Pb) as the distance be-
tween probability distributions Pa and Pb over the support
space Ω can be defined as given below [14]:
distW (Pa,Pb) = inf

Λ
{EΛ[φ(xa, xb)] : xa ∼ Pa , xb ∼ Pb} (3)

where φ(xa, xb) represents a continuous distance between
uncertain parameters xa and xb with probability distributions
Pa and Pb, respectively. Also, the infimum is calculated over
all joint probability distributions Λ with marginal distributions
Pa and Pb.

Hence, the ambiguity set ΘW can be presented as follows:
ΘW = {P ∈ Ξ(Ω) : distW (P, P̂Ns

) ≤ ρ} (4)

where Ξ(Ω) stands for the set of all probability measures over
the support set Ω. Moreover, P̂Ns

and ρ represents the center
and radius of the Wasserstein ball, respectively. The radius ρ
is a function of the confidence level (i.e., γ), the diameter of
the support set (i.e., DΩ), and the number of samples (i.e., Ns)
as given below [14]:

ρ = DΩ

√
1

2Ns
ln

(
1

1− γ

)
(5)

In this paper, previous observations of daily patterns for
uncertain loads and power generations of RESs are used as
training samples to construct the ambiguity set.

B. Distributionally Robust Model

The DR-MIRP model in compact form can be presented as:

min
x

cᵀ · x+ max
P∈ΘW

E

 ∑
t∈ΩT

S(x, η̃t)

 (6)

The proposed min-max-min formulation finds the optimal
solution under the worst-case probability distribution belong-
ing to the Wasserstein metric-based ambiguity set where
investment variables x are here-and-know decisions and opera-
tion variables yt at hour t are wait-and-see decisions. Clearly,
this min-max-min formulation cannot be solved directly by
available optimization packages, and consequently, a solvable
MILP counterpart is presented in the sequel.

Given the sample set {η1, ..., ηs, ..., ηNs} with ηs =

{ηs1, ..., ηst , ..., ηs24} for s = 1, ..., Ns over the bounded support
set Ω =

{
Ω,Ω

}
, where Ω and Ω represents the lower and upper

bounds of the support set, respectively, the inner max-min



optimization problem in (6) can be rewritten as a minimiza-
tion problem using the equivalence between the worst-case
expectation and the optimal value of the generalized moment
problem (i.e., Theorem 1 in [16]) as well as the strong linear
programming duality (Theorem 6 in [16]).

Therefore, the min-max-min optimization problem in (6)
can be recast into a single minimization problem as follows:

min
Ψ

cᵀ · x+ ρ · λ+
1

Ns

Ns∑
s=1

∑
t∈ΩT

(
dᵀ · yst

)
(7a)

s.t.
E(x) + F · yst ≥ G(x) · η̃st s = 1, .., Ns, t ∈ ΩT

dᵀ · σ1
zt ≤ λ z = 1, ..., Nηt , t ∈ ΩT

dᵀ · σ2
zt ≤ λ z = 1, ..., Nηt , t ∈ ΩT

G(x) · ez ≤ F · σ1
zt z = 1, ..., Nηt , t ∈ ΩT

−G(x) · ez ≤ F · σ2
zt z = 1, ..., Nηt , t ∈ ΩT

λ ≥ 0

(7b)

where Ψ = {λ, σ1
zt, σ

2
zt, x, yst} represents the vector of opti-

mization variables. Also, Nηt denotes the number of uncertain
parameters at hour t and ez denotes a vector where its zth
element is equal to one and its other elements are equal
zero. The robust counterpart in (7a) and (7b) is a tractable
MILP optimization problem, and it can be directly solved by
available optimization solvers. Clearly, the computation time
of the proposed MILP robust counterpart is a function of
the number of training in-sample scenarios that are used to
construct the ambiguity set.

IV. CASE STUDIES

In this section, the proposed DR-MIRP model is tested on
a 33-bus distribution network as illustrated in Fig. 1 [9]. All
simulations are run on a server with 120 Intel Xeon processors
and 102 GB of RAM. Also, the CPLEX solver in GAMS
is used to solve MILP problems where the optimality gap
is set to 10−2. The nominal estimates of the representative
operating day are obtained from the normalized patterns of
loads and power generations of RESs in the electric reliability
council of Texas (ERCOT) in 2014 where the representative
operating day is obtained for the D-MIRP problem using the
k-means clustering technique as depicted in Fig. 2 [17]. The
prices of buying and selling electricity from and to the bulk
upstream network are equal to $35 and $10, respectively. The
annualized investment/reinforcement cost of lines is to 12000

$/km. Also, the characteristics of micro-turbine and renewable
generators are depicted in Table I [3]. In this study, 32

micro-turbine generators with a 1-MW capacity, 32 renewable
generators with a 1-MW capacity, and 32 lines with a 400-
kVA capacity connecting neighboring buses are considered as
investment/reinforcement candidates. It is worthwhile to note
that there in no investment/reinforcement candidate at the main
bus connecting MG to the bulk upstream network.

To evaluate the performance of the proposed data-driven
distributionally robust planning tool, DR-MIRP has been com-
pared with deterministic (i.e., D-MIRP), and robust (i.e., R-
MIRP) models as depicted in Table II. In this study, it is

Grid
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Fig. 1. The 33-bus distribution network.
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Fig. 2. The normalized patterns of loads and power generations of RESs

assumed that the support sets representing deviations of loads
and power generations of RESs from their nominal estimates
are bounded between [p̄dt, 1.25 · p̄dt] and [0.85 · p̄max

gt , p̄max
gt ],

respectively. Also, the confidence level γ in (5) is set to 0.05.
According to Table II, the total costs of the D-MIRP, DR-

MIRP with five training in-sample scenarios, and R-MIRP
models are equal to 1667 $/day, 2155 $/day, and 2333 $/day,
respectively. In other words, the D-MIRP model has the lowest
total costs with the lowest conservatism against future realiza-
tions of the uncertain parameters while the R-MIRP model has
the highest total costs with the highest conservatism against
future realizations of the uncertain parameters. Additionally,
more renewable generators with higher uncertainty than micro-
turbine ones are constructed in the D-MIRP solution as com-
pared to the DR-MIRP and R-MIRP ones while more micro-
turbine generators with lower uncertainty than renewable ones
are constructed in the R-MIRP solution as compared to the
DR-MIRP and D-MIRP ones. The main reason is that the
D-MIRP model excludes deviations of uncertain parameters
from their nominal estimates and assumes that loads and
power generations of RESs are not subject to uncertainty
while the R-MIRP model includes the worst-case deviations
of uncertain parameters from their nominal estimates and
assumes that loads and power generations of RESs are subject
to uncertainty. One the contrary, the DR-MIRP model more
appropriately captures the uncertainty spectrum by means of
a data-driven ambiguity set and finds a solution avoiding both
the over-conservative risk-averse nature of the R-MIRP model
and the risk-neutral nature of the D-MIRP model. Accordingly,
the total costs of the DR-MIRP model is higher than that of

TABLE I
CHARACTERISTICS OF GENERATORS

Technology Investment Cost
($/MW)

Operation Cost
($/MWh)

Micro-Turbine Unit 100,000 30
Renewable Unit 120,000 5



TABLE II
OPTIMAL INVESTMENT PLANS OF DETERMINISTIC, DISTRIBUTIONALLY ROBUST, AND ROBUST MODELS

Model Total Costs
($/day)

Built Micro-Turbines
(Bus)

Built Renewable Units
(Bus)

Built Lines
(From Bus-To Bus)

Computation Time
(s)

D-MIRP 1667 6 12, 24, 30 (1-2) 34
DR-MIRP 2155 8, 31 13, 25 (1-2), (7-8), (22-23),(30-31) 128
R-MIRP 2333 13, 25, 31 6 (1-2) 184

TABLE III
OPTIMAL INVESTMENT PLANS VERSUS THE NUMBER OF TRAINING

SAMPLES

Training Sample
(#)

Total Costs
($/day)

Computation Time
(s)

5 2155 128
10 2141 295

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Confidence Level 

2145

2150

2155

2160

2165

2170

2175

T
o

ta
l 

C
o

st
s 

($
/d

a
y

)

Fig. 3. Total costs versus confidence level.

the D-MIRP one and less than that of the R-MIRP model.
It is worthwhile to mention that the accuracy of the DR-
MIRP model can be enhanced by increasing the number of
training samples. For instance, as illustrated in Table III, the
total costs of the DR-MIRP model are decreased by increasing
the number of training samples from 5 to 10 at the expense
of a higher computation time. Also, the confidence level of
the proposed DR-MIRP model can be adjusted by means of γ
in (5). The variations of the total costs versus the confidence
level of the proposed DR-MIRP model are demonstrated in
Fig. 3. According to Fig. 3, the total costs are monotonically
decreased by increasing the value of the confidence level.

V. CONCLUSIONS

In this paper, a data-driven distributionally robust model
is introduced for investment/reinforcement planning in sus-
tainable MGs under the uncertainty of loads and power
generations of RESs. The proposed approach incorporates
the true probability distribution of the uncertain parameters
with a specific confidence level by means of a data-driven
Wasserstein metric-based ambiguity set. Also, the empirical
distributions of uncertain parameters as training in-sample
scenarios represent the center of the Wasserstein ball. Since the
proposed tri-level DR-MIRP model is intractable and it cannot
be solved by available optimization packages, the equivalence
between the worst-case expectation and the optimal value
of the generalized moment problem as well as the strong
linear programming duality are used in this paper to obtain
a tractable MILP counterpart. The DR-MIRP model is com-
pared with deterministic and robust models. Simulation results
demonstrate that the proposed model is capable of capturing

the uncertainty spectrum more accurate than the deterministic
and robust models and avoids both the over-conservative risk-
averse nature of robust model and the risk-neutral nature of
the deterministic model. Also, the proposed model can control
the conservatism level of the optimal solution by means of the
value of the confidence level. In the future, other ambiguity
sets with tractable robust counterparts can be considered.
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