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Abstract
In remote or islanded communities, the use of microgrids (MGs) is necessary to ensure electrification and resilience of supply. However,
even in small-scale systems, it is computationally and mathematically challenging to design low-cost, optimal, sustainable solutions
taking into consideration all the uncertainties of load demands and power generations from renewable energy sources (RESs). This
paper uses the open-source Python-based Energy Planning (PyEPLAN) tool, developed for the design of sustainable MGs in remote
areas, on the Alderney island, the 3rd largest of the Channel Islands with a population of about 2000 people. A two-stage stochastic
model is used to optimally invest in battery storage, solar power, and wind power units. Moreover, the AC power flow equations are
modelled by a linearised version of the DistFlow model in PyEPLAN, where the investment variables are here-and-now decisions and
not a function of uncertain parameters while the operation variables are wait-and-see decisions and a function of uncertain parameters.
The k-means clustering technique is used to generate a set of best (risk-seeker), nominal (risk-neutral), and worst (risk-averse) scenarios
capturing the uncertainty spectrum using the yearly historical patterns of load demands and solar/wind power generations. The proposed
investment planning tool is a mixed-integer linear programming (MILP) model and is coded with Pyomo in PyEPLAN.

Nomenclature

Indices
n Index of nodes where n′ and n′′ stand for nodes before and

after node n, respectively.
d Index of load demands.
g Index of generation units.
o Index of representative days (scenarios).
t Index of time periods.
Parameters
eini
b Initial stored energy of battery unit b (kW).
emax
b Maximum stored energy of battery unit b (kW).
emin
b Minimum stored energy of battery unit b (kW).
pcd Penalty cost of load demand curtailment ($/kWh).
pcr Penalty cost of RES power generation curtailment ($/kWh).
fd Power factor of load demand d.
icb Annualised investment cost of battery unit b ($).
icg Annualised investment cost of generation unit g ($).
mcg Marginal cost of generation unit g ($/kWh).
pmax,c/d
b Maximum charging/discharging power of battery unit b

(kW).
p̄dto Load demand d at hour t in representative day o ($/kWh).
pmax
n′n Maximum active power flow from node n′ to node n (kW).
pmax
g Maximum active power of generation unit g (kW).
pmax
gto Maximum power generation of generation unit g at hour t

in representative day o (kW).
qmax
b Maximum reactive power of battery unit b (kVAr).
qmin
b Minimum reactive power of battery unit b (kVAr).
qmax
n′n Maximum reactive power flow from node n′ to node n

(kVAr).
qmax
g Maximum reactive power of generation unit g (kVAr).

This work is supported by the UK Engineering and Physical Sciences Research

Council (EPSRC) under Grant EP/R030243/1.

qmin
g Minimum reactive power of generation unit g (kVAr).
rn′n Resistance of the line connecting nodes (n′, n) (ohm).
vmax Maximum permitted voltage magnitude (V).
vmin Minimum permitted voltage magnitude (V).
xn′n Reactance of the line connecting nodes (n′, n) (ohm).
ηc/d
b Reactance of the line connecting nodes (n′, n) (ohm).

Sets
ΩB Set of battery units where ΩBn indicates set of battery units

connected to node n.
ΩN Set of nodes where ΩNn indicates set of nodes after and

connected to node n.
ΩD Set of load demands where ΩDn indicates set of load

demands connected to node n.
ΩL Set of distribution lines connecting nodes.
ΩM Set of micro-turbine/diesel units where ΩMn indicates set

of micro-turbine/diesel generators connected to node n.
ΩR Set of RES units where ΩRn indicates set of RES units

connected to node n.
ΩT Set of hours.
Variables
pc/d
bto Active charging/discharging power of battery unit b at hour

t in representative day o (kW).
pn′nto Active power flow from node n′ to node n at hour t in

representative day o (kW).
pgto Active power generation of generation unit g at hour t in

representative day o (kW).
qbto Reactive power of battery unit b at hour t in representative

day o (kW).
qn′nto Reactive power flow from node n′ to node n at hour t in

representative day o (kVAr).
qgto Reactive power generation of generator g at hour t in

representative day o (kVAr).
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vnto Voltage magnitude of node n at hour t in representative day
o (V).

ydto Curtailment status of load demand d at hour t in represen-
tative day o (i.e., 1/0: curtailed/not-curtailed).

zb Investment status of battery unit b (i.e., 1/0: built/non-built).
zg Investment status of RES unit g (i.e., 1/0: built/non-built).

1 Introduction

Alderney island with an area of 3 square miles runs a closed com-
plex energy system that entirely relies on imported fuel oils for
electricity, heating, and transportation. Major economic activities
on the island include e-trade, ecotourism, small businesses, health
care services. The only energy supplier on the island is Alderney
Electricity Limited (AEL) [1], providing for both electric and heat-
ing loads. AEL is responsible for the importation and distribution
of different fuels, including kerosene and transport fuels, as well as
the generation and distribution of electricity. The company man-
ages both the 11 kV primary distribution network, consisting of
21 substations, as well as the 415 V secondary distribution net-
work. AEL starts with the higher voltage to account for cable
losses ensuring the voltage is still in spec. by the time it gets where
it is going. Networks mainly comprise underground cables, there
are a small number of overheads which are being progressively
replaced. Electric power on Alderney island is centrally generated
by 8× 450 kVA diesel generators and supplied through an exten-
sive network consisting of underground cables. Hence, the main
aim of this paper is to create a sustainable microgrid (MG) on
Alderney island, which obviates the reliance of AEL on only fossil
fuels.

1.1 Literature Review and Contributions
MG is a low-voltage electrical network, including diverse con-
trollable and uncontrollable producers, consumers, and prosumers,
that can be operated autonomously. The concept of MG has been
initially introduced in the seminal reference [2] to cope with
the main challenges in integrating distributed energy resources
into low-voltage electric networks. Most of MGs in remote areas
(like Alderney island) have been operated by fossil fuel-based
generation technologies with competitive costs as compared to
sustainable generation technologies. However, increasing concerns
related to global climate change as well as advances in sustain-
able generation technologies have made renewable energy sources
(RESs) a priority in MGs during the last decade [3]. Since RES
power generation (e.g., solar and wind power) is inherently subject
to uncertainty and volatility, ignoring them may result in infeasible
investment and operation plans. Therefore, it is of utmost impor-
tance to use practical investment and operation planning tools
presenting feasible solutions under different uncertainties.

Previously, stochastic optimisation (SO) [4, 5] and robust opti-
misation (RO) [6–8] have been introduced in the literature to cope
with different uncertain parameters in distribution networks and
MGs. RO provides an investment plan, which is optimal under the
worst-case scenario of uncertain parameters, while SO provides
an investment plan, which is optimal on average for all scenarios
characterising uncertain parameters. It is noteworthy to mention
that the optimal solutions of RO-based investment planning mod-
els may be conservative than the optimal solutions of SO-based
ones in MGs with sufficient historical data. Accordingly, a Python-
based Energy PLANning (PyEPLAN) tool is used in this paper to
propose a sustainable MG strategy on Alderney island based on

a two-stage SO-based model. In the proposed approach, invest-
ment variables are here-and-now decisions and not a function of
uncertain parameters, while operation variables are wait-and-see
decisions and a function of uncertain parameters. In summary,
the main contributions of this paper are as follows: (i) A two-
stage stochastic mixed-integer linear programming (MILP) model
is introduced in this paper to optimally invest in battery, solar,
and wind units on Alderney island under the uncertainty of load
demands and RES power generations; (ii) A practical MG test
system is presented for future investment and operation planning
studies based on the network data of the AEL MG.

1.2 Paper Organisation
The rest of this paper is organised as follows. In Section 2, an
overview about PyEPLAN and its clustering, investment planning,
and operation planning modules are presented. In Section 3, the
proposed two-stage stochastic MG investment planning (SMIP)
model as an MILP optimisation problem is introduced. In Sec-
tion 4, the proposed SMIP model is tested on the AEL MG under
different conditions. Finally, Section 5 concludes the paper.

2 Brief Review of PyEPLAN

The planning tool used in this work, PyEPLAN, has three dif-
ferent modules, including data processing, investment planning,
and operation planning in MGs, as depicted in Fig. 1. In this
paper, only the investment planning module is used to plan a sus-
tainable MG on Alderney island. Internally, PyEPLAN uses the
open-source Python-based optimisation modelling (Pyomo) [9]
language to formulate, solve, and analyze the optimisation prob-
lems for investment and operation planning. Both investment and
operation planning modules in PyEPLAN are developed based on
a concrete [9] model of Pyomo that can be initialised by means
of comma-separated values (CSV) files, including input data sets
(i.e., different characteristics of various components in MGs).

2.1 Investment Planning Module
The objective of the MILP is to minimize both investment and
operation costs during a long-term planning horizon (i.e., from one
year to several years) under both investment and operation related
techno-economic constraints. As input, the module needs network
characteristics (i.e., candidate/existing generation technologies,
candidate/existing lines), as well as long-term estimated/forecasted
load demands and RES power generations to obtain the optimal
solution. Accordingly, the data processor, as discussed in the next
subsection, is considered in PyEPLAN to provide the input data
needed for the investment planning module.

2.2 Data Processor
In the investment planning module, it is assumed that the pattern
of load demands (obtained by dividing the hourly load demands
of each year by its peak), as well as the pattern of RES power
generations (obtained by dividing the hourly power generations of
each RES by its capacity) remain unchanged during a one-year
period [10]. However, the SMIP model needs a sufficient num-
ber of scenarios to characterise the uncertain load demand as well
as the uncertain RES power generation during a one-year period.
Therefore, the k-means clustering technique, as presented in [11],
is used to obtain representative days from daily load demand pro-
files and RES power generation during a year. Then, the SMIP
model incorporates the best (risk-seeker), nominal (risk-neutral),
and worst (risk-averse) representative days [10].
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Fig. 1: Overall PyEPLAN architecture.

3 Stochastic MG Planning Model

In this section, the mathematical formulation of the proposed SMIP
model is briefly reviewed within a single-year planning horizon
under different representative days (scenarios) for load demands
and RES power generations as given below:

minΨinv + Ψopr (1a)

s.t.
Ψinv =

∑
b∈ΩB

(icb · zb) +
∑
g∈ΩR

(icg · zg) (1b)

Ψopr =
∑
o∈ΩO

∑
t∈ΩT

∑
g∈{ΩM ,ΩR}

(τo ·mcg · pgto) +

∑
o∈ΩO

∑
t∈ΩT

∑
s∈ΩS

(τo · pcd · pdto · (1− ydot)) +

∑
o∈ΩO

∑
t∈ΩT

∑
g∈ΩR

(
τo · pcr ·

(
pmax
gto − pgto

)) (1c)

pn′nto +
∑

g∈{ΩMn ,ΩRn}
pgto +

∑
b∈ΩBn

(
pd
bto − p

c
bto

)
=

∑
n′′∈ΩNn

pnn′′to +
∑

d∈ΩDn

(p̄dto · ydto) n ∈ ΩN , t ∈ ΩT , o ∈ ΩO

(1d)

qn′nto +
∑

g∈ΩMn

qgto +
∑

b∈ΩBn

qbto =
∑

n′′∈ΩNn

qnn′′t+

∑
d∈ΩDn

tan (arccos (fd)) · (p̄dto · ydto) n ∈ ΩN , t ∈ ΩT , o ∈ ΩO

(1e)

(rn′n · pn′nto + xn′n · qn′nto) =

vn′to − vnto n ∈ ΩN , t ∈ ΩT , o ∈ ΩO
(1f)

− pmax
nn′′ ≤ pnn′′to ≤ pmax

nn′′
(
n, n′′

)
∈ ΩL, t ∈ ΩT , o ∈ ΩO (1g)

− qmax
nn′′ ≤ qnn′′to ≤ qmax

nn′′
(
n, n′′

)
∈ ΩL, t ∈ ΩT , o ∈ ΩO (1h)

0 ≤ pgto ≤ pmax
g g ∈ ΩM , t ∈ ΩT , o ∈ ΩO (1i)

qmin
g ≤ qgto ≤ qmax

g g ∈ ΩM , t ∈ ΩT , o ∈ ΩO (1j)

0 ≤ pgt ≤ p̄max
gto · zg g ∈ ΩR, t ∈ ΩT , o ∈ ΩO (1k)

qmin
g · zg ≤ qgto ≤ qmax

g · zg g ∈ ΩR, t ∈ ΩT , o ∈ ΩO (1l)

emin
b · zb ≤ eini

bo +

t∑
τ=1

(
ηc
b · p

c
bτo −

1

ηd
b

· pd
bτo

)
≤ emax

b · zb b ∈ ΩB , t ∈ ΩT , o ∈ ΩO

(1m)

T∑
τ=1

(
ηc
b · p

c
bτo −

1

ηd · p
d
bτo

)
= 0 b ∈ ΩB , t ∈ ΩT , o ∈ ΩO (1n)

0 ≤ pc
bto ≤ p

max,c · zb b ∈ ΩB , t ∈ ΩT , o ∈ ΩO (1o)

0 ≤ pd
bto ≤ p

max,d · zb b ∈ ΩB , t ∈ ΩT , o ∈ ΩO (1p)

vmin ≤ vnot ≤ vmax n ∈ ΩN , t ∈ ΩT , o ∈ ΩO (1q)

v1to = 1 t ∈ ΩT , o ∈ ΩO (1r)

The objective function (1a) minimises the total investment and
operational costs, where Ψinv calculates the total investment costs
of battery and RES units, as indicated in (1b), and Ψopr represents
the total operational costs of micro-turbine/diesel and RES units as
well as curtailment costs of load demands and RES power genera-
tions, as indicated in (1c). For simplicity, all existing and candidate
technologies are considered as investment candidates, where the
investment costs (resp. decision variables) of existing technologies
(i.e., micro-turbine/diesel units) are set to 0 (resp. 1).

PyEPLAN offers different ways to include the network con-
straints. In this paper, the linearised approximation of the DistFlow
formulation is selected for the AC power flow equations [12]
and the quadratic power flow limitations are linearised by means
of a polygon approximation [13]. Accordingly, constraints (1d)
and (1e) ensure active and reactive power balance at each node
of every hour of all representative days, respectively. Constraint
(1f) denotes the difference of voltage magnitudes between two
neighbor nodes connected. Constraints (1g) and (1h) bound the
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Fig. 2: The AEL network one-line diagram.

active and reactive power flows between two connected neighbor
nodes, respectively. Constraints (1i) and (1j) ensure the limits on
active and reactive power generation for micro-turbine/diesel units,
respectively, while constraints (1k) and (1l) ensure the limits of
active power generation for RES units.

Constraint (1m) bounds the stored energy of each battery unit
at every hour of all representative days. Moreover, constraint (1n)
ensures the initial and final stored energy of battery units for each
representative day. Constraints (1o) and (1p) bound the charging
and discharging power of each battery unit at every hour in all
representative days, respectively. Constraint (1q) limits the allowed
variation bound of the nodal voltage magnitude. Also, constraint
(1r) sets the voltage magnitude at the main AEL substation on one.
The SMIP model in (1a)-(1r) is an MILP problem, which can be
solved by off-the-shelf optimisation packages.

4 Case Studies
4.1 Input Data
In this section, the SMIP model described above is solved using
PyEPLAN [14] to propose a low-carbon MG design for the Alder-
ney electricity network. The AEL 11 kV primary network consists
of four radial feeders as depicted in Fig. 2. Electric power is gen-
erated solely at the power station by the 8× 450 kW diesel units.
The power station is connected to the 11 kV primary distribution
network via two 2500 kVA transformers and the 11 kV primary
distribution network is connected to the 415 V secondary distribu-
tion network by 500 kVA transformers at different substations and
locations. The AEL distribution network comprises mainly three
types of underground copper core cables (16 mm2 PILC cables, 25
mm2 PILC cables, and 70 mm2 XLPE cables). There are a variety
of other types and sizes of cable in certain locations. For example,
newer additions to the high-voltage side are usually 70, 90 or 150
mm2 cables.

Furthermore, battery, solar, and wind units are considered
as investment candidates while investment costs of different
technologies are taken from https://atb.nrel.gov and
depicted in Table 1. Also, it is assumed that the interest rate (i.e.,
i) is equal to 0.053, while the life time (i.e., y) of battery, solar, and
wind units is equal 15, 30, and 30, respectively. Accordingly, the
capital recovery factor (i.e., CRF =

i·(1+i)y

(1+i)y−1
) for battery, solar,

and wind units is equal to 0.098, 0.067, and 0.067, respectively,

Table 1 Investment costs of different technologies
Technology Battery (B) Solar (S) Wind (W)

Investment Cost (M£/MW) 0.98 0.84 1.21
Annualised Investment Cost (£/MW) 96040 56280 81070

Table 2 RES capacity factor on Alderney island
Technology Built Capacity (MW) Capacity Factor (%)

Solar (S) 1.8 16.27
Wind (W) 1.8 54.39

and consequently, the annualised investment costs can be calcu-
lated as depicted in Table 1. Also, it is assumed that operational
costs of battery, solar, and wind units are equal to zero while the
operational cost of diesel units is equal to 196.2 £/MWh [1] on
Alderney island at the time of writing, but fluctuates with market
price on the date of loading at the refinery. The penalty cost of
curtailing load demand is set to 1962 £/MWh.

The k-means clustering technique is used to obtain representa-
tive days using the yearly profiles of load demands and RES power
generations on Alderney island in 2013. The peak load is equal to
1.252 MW. In addition, the solar irradiation and wind speed on
Aldenery island in 2013 are taken from [15]. In this paper, it is
assumed that the efficiency of candidate solar panels/modules in
solar farm is equal to 10% [16] and the cut-in speed, rated speed,
and cut-out speed of candidate wind turbines (i.e., Vestas V90 1.8
MW) are equal to 4 m/s, 12 m/s, and 25 m/s, respectively. In addi-
tion, the hub height of each wind turbine is equal to 80 m. Given
a 1.8 MW solar farm with a 2-hectare land used to construct this
power plant and a 1.8 MW wind farm, the yearly profiles of load
demands, solar power generations, and wind power generations in
2013 are depicted in Fig. 3.

The capacity factors∗ (CFs) of both solar and wind farms are
presented in Table 2. Accordingly, the CF of wind technology is
significantly higher than the CF of solar technology while the land
needed by wind turbines to create a 1.8 MW wind farm is signif-
icantly less of the land needed by solar panels/modules to create
a 1.8 MW solar farm (i.e., approximately 2 hectares). Addition-
ally, according to Table 1, battery units have the highest annualised
investment costs while solar units have the lowest annualised
investment costs. Therefore, it is necessary to use the proposed
planning tool to obtain the optimal technology mix for creating a
sustainable MG on Alderney island under different circumstances.

4.2 Investment Plan Under Best, Nominal, and Worst Scenarios
In this study, one best, nominal, and worst representative day
are constructed using the yearly profiles of load demands and
solar/wind power generations on Alderney island in 2013, as
illustrated in Fig.3. Also, different investment alternatives are con-
sidered at the current location of the AEL power plant, including:
Case 1 (C1): Only 10× 1.8-MW wind units are considered as
investment candidates.
Case 2 (C2): Both 10× 1.8-MW battery units and 10× 1.8-MW
wind units are considered as investment candidates.
Case 3 (C3): Only 10× 1.8-MW solar units are considered as
investment candidates.

∗The capacity factor represents the ratio of the electrical energy generated by a

specific technology to the electrical energy, which could have been generated at

rated capacity continuously during a one-year period (or other specific periods).
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Fig. 3: Yearly profiles of load demands and solar/wind power generations on Alderney island in 2013.

0 2 4 6 8 10 12 14 16 18 20 22 24

0.4

0.6

0.8

1

1.2

Time (h)

L
o
a
d
D
em

a
n
d
(M

W
)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

Time (h)

S
o
la
r
P
o
w
er

G
en

er
a
ti
o
n
(M

W
)

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

Time (h)

W
in
d
P
o
w
er

G
en

er
a
ti
o
n
(M

W
) Worst

Nominal

Best

Fig. 4: The best, nominal, and worst representative days for load demands and solar/wind power generations on Alderney island.

Table 3 Optimal investment plans for different cases under best, nominal, and worst representative days
Case Number C1 C2 C3 C4 C5 C6
Best Representative Day 1×W 1×W 5× S 1× B,2× S 1×W 1×W
Nominal Representative Day 2×W 2×W 9× S 1× B,5× S 1× S,1×W 1×W
Worst Representative Day Infeasible Infeasible 10× S 10× S 10× S AEL MG

C1 C2 C3 C4 C5 C6
0

0.1
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0.3
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T
o
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l
C
o
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s
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£
]

0.15 0.15
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0.15 0.15

(a) Risk-Seeker

C1 C2 C3 C4 C5 C6
0

0.1

0.2

0.3
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T
o
ta
l
C
o
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s
[M

£
]
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Fig. 5: Total investment and operational costs for different cases under best, nominal, and worst representative days.

Case 4 (C4): Both 10× 1.8-MW battery units and 10× 1.8-MW
solar units are considered as investment candidates.
Case 5 (C5): All 10× 1.8-MW battery units, 10× 1.8-MW solar
units, and 10× 1.8-MW wind units are considered as investment
candidates.
Case 6 (C6): In addition to the current AEL diesel units, all options
in C5 are considered as investment candidates in C6.

The best, nominal, and worst representative days are illustrated
in Fig. 4 wherein solar/wind power generations are provided for
each unit. The optimal investment plans for all cases under the best,
nominal, and worst representative days are presented in Table 3.
Moreover, the total investment and operational costs are depicted
in Fig. 5. For all cases C1-C6, the total costs under the best rep-
resentative day have the lowest value while the total costs under
the worst representative day have the highest value. For instance,
the total costs for the best, nominal, and worst representative days
are equal to 0.15 M£ in Fig. 5a, 0.29 M£ in Fig. 5b, and 16.57 M£
in Fig. 5c, respectively. It is noteworthy to mention that the best
representative day for wind power generation corresponds to the
maximum capacity of each candidate wind unit while the worst
representative day for wind power generation corresponds to no

power generation. Accordingly, C1 and C2 under the worst repre-
sentative day result in infeasible solutions, as illustrated in Table 3,
and their total costs in Fig. 5c (i.e., 16.57 M£) only correspond
to the penalty cost of load demand curtailment during the entire
planning horizon. However, C1, C2, C5, and C6 under the best rep-
resentative day result in identical optimal investment plans, only
constructing a 1.8 MW wind unit and obviating the need to operate
the current AEL diesel units. Furthermore, C6 provides not only
the lowest total costs, similar to C1, C2, C5, and C5, under the best
representative day, but also the lowest total costs under the nom-
inal and worst representative days. However, C6 under the worst
representative day only rely on the current AEL MG without con-
structing any battery, solar, or wind units. The main reason is that
creating a sustainable MG on Alderney based on only one worst
representative day results in an over-conservative investment plan.
4.3 Investment Plan for Different Number of Representative Days
To enhance the accuracy of the proposed solution, different number
of best, nominal, and worst representative days can be consid-
ered for C6, including 1 (R1), 5 (R5), 10 (R10), 50 (R50), and
100 (R100). The optimal investment plan for C6 for each choice
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Table 4 Investment plans for different number of best, nominal, and worst representative days for Case C6
Case Number R1 R5 R10 R50 R100
Best Representative Day 1×W 1×W 1×W 1×W 1× S,1×W
Nominal Representative Day 1×W 1× S,1×W 1× S,1×W 1× S,1×W 1× S,1×W
Worst Representative Day AEL MG 2×W 1× S,1×W 1× S,1×W 1× S,1×W
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Fig. 6: Total investment and operational costs for different number of best, nominal, and worst representative days.

are presented in Table 4 and their total investment and operational
costs are depicted in Fig. 6. Increasing the number of represen-
tative days increases the total costs under the best representa-
tive day (Fig. 6a) and the nominal representative day (Fig. 6b),
while decreases the total cost under the worst representative day
(Fig. 6c). Additionally, the investment plans are identical under the
best, nominal, and worst representative days in R100 (construct-
ing one 1.8 MW solar and one 1.8 MW wind unit in addition to
the current AEL MG). It is worthwhile to mention that the opti-
mal investment plan remains unchanged after 5 representative days
under the nominal condition, while it remains unchanged after 100

(resp. 10) representative days under the best (resp. worst) condi-
tions, as shown in Fig. 6. Finally, it can be concluded that 5 nominal
representative days can appropriately characterise the uncertain
profiles of load demand and RES generation on Alderney island
with reasonable computational complexity.

5 Conclusion

This paper presents a two-stage stochastic model for creating a
sustainable MG on Alderney island under the uncertainty of load
demands and RES power generations. Also, the k-means cluster-
ing technique is used to characterise the yearly profiles of load
demands and RES power generations through a sufficient number
of best, nominal, and worst representative days. The proposed MG
planning model is implemented in the open-source tool PyEPLAN.
Simulation results demonstrate that the best low-carbon investment
plan pertains to a hybrid MG including both solar and wind power
in addition to current AEL diesel units.
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