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Abstract—In this paper, the Unit Commitment (UC) problem
in a power network with low levels of rotational inertia is studied.
Frequency-related constraints, namely the limitation on Rate-of-
Change-of-Frequency (RoCoF), frequency nadir and steady-state
frequency error, are derived from a uniform system frequency
response model that incorporates dynamics and controls of
both synchronous generators and grid-forming inverters. These
constraints are then included into a stochastic UC formulation
that accounts for wind power and equipment contingency un-
certainties using a scenario-tree approach. In contrast to the
linear RoCoF and steady-state frequency error constraints, the
nadir constraint is highly nonlinear. To preserve the mixed-
integer linear formulation of the stochastic UC model, we propose
a computationally efficient approach that allows to recast the
nadir constraint by introducing appropriate bounds on relevant
decision variables of the UC model. This method is shown to be
generally more accurate and computationally more efficient for
medium-sized networks than a piece-wise linearization method
adapted from the literature. Simulation results for a modified
IEEE RTS-96 system revealed that the inclusion of inertia-related
constraints significantly influences the UC decisions and increases
total costs, as more synchronous machines are forced to be online
to provide inertial response.

Index Terms—Unit commitment, low-inertia grid, frequency
constraints, wind uncertainty, voltage source converter.

NOMENCLATURE

The main notation used for the unit commitment problem
formulation in this paper is introduced below. Additional
symbols are defined in the paper where needed. All symbols
are augmented by index t when referring to different time
periods.

A. Sets and Indices

` ∈ L Set of transmission lines.
ξ ∈ E Set of scenarios ξ = {c, ω} including generation

outages (c) and wind power uncertainty (ω).
i ∈ I Set of conventional generation units.
j ∈ J Set of converter-interfaced (i.e., wind) generation

units.
d ∈ Jd Subset of converter-interfaced generation units provid-

ing droop control.
v ∈ Jv Subset of converter-interfaced generation units pro-

viding virtual inertia.
n ∈ N Set of nodes.
In Set of conventional generation units located at bus n.
Jn Set of converter-based units located at bus n.
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B. Decision variables

δ̂n Day-ahead voltage angle at node n [rad].
δ̃nξ Real-time voltage angle at node n in scenario ξ [rad].
Fξt Fraction of total power generated by high-pressure

turbines in scenario ξ [p.u.].
kiξt Scaled power gain factor of conventional generator i in

scenario ξ [p.u.].
lshed
nξt Shedding of load at node n in scenario ξ [MW].
Mξt Aggregate inertia constant of conventional generators

in scenario ξ [s].
Dξt Aggregate damping constant of conventional generators

in scenario ξ [p.u.].
pit Day-ahead dispatch of conventional generator i [MW].
r

+/−
iξt Up/Downward reserve deployment of generator i in

scenario ξ [MW].
Rξt Aggregate droop factor of conventional generators in

scenario ξ [p.u.].
uit Commitment status of conventional generator i.
wjt Day-ahead dispatch of wind generator j [MW].
wspill
jξt Wind spillage of generator j in scenario ξ [MW].

yit Start-up variable of conventional generator i.
zit Shut-down variable of conventional generator i.

C. Parameters

Mi Inertia constant of conventional generator i [s].
Di Damping constant of conventional generator i [p.u.].
Ri Droop gain of conventional generator i [p.u.].
Ki Mechanical power gain of conventional generator i

[p.u.].
Fi Fraction of total power generated by the turbine of

conventional generator i [p.u.].
Mv Virtual inertia constant of converter-based generator v

[s].
Dv Virtual damping constant of converter-based generator

v [p.u.].
Rd Droop gain of converter-based generator d [p.u.].
αiξt Outage parameter of conventional generator i in sce-

nario ξ.
∆Pξt Size of power outage in scenario ξ [p.u.].
πξ Probability of occurrence of scenario ξ.
Bnm Susceptance of transmission line (n,m) [S].
Ci Day-ahead price offer of generator i [$/MWh].
C

SU/SD
i Start-up/Shut-down price offer of generator i [$].

C
+/−
i Up/Downward reserve price offer of generator i

[$/MWh].
Csh Value of lost load [$/MWh].
Lnt Load demand at node n [MW].
fnm Capacity of transmission line (n,m) [MW].
P i/P i Active power limits of conventional generator i [MW].
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R
+/−
i Up/Downward reserve capacity of generator i [MW].

R
U/D
i Ramp up/down limits of conventional generator i

[MW/h].
W ∗jξt Wind power realization of generator j in scenario ξ

[MW].
Wd Total power capacity of converter-interfaced genera-

tors providing droop control [MW].
Wv Total power capacity of converter-interfaced genera-

tors providing virtual inertia [MW].

I. INTRODUCTION

WITH increasing penetration of Renewable Energy Sources
(RES), system operators face new challenges in order

to ensure power grid stability. One of these challenges is
frequency stability due to a loss of generation or a large
variation of load. In traditional power systems, synchronous
generators (e.g., hydro or steam turbines) provide rotational
inertia through stored kinetic energy in their rotating mass
(turbine system and rotor). This energy is important to stabilize
the system as it ensures slower frequency dynamics and
reduces the Rate-of-Change-of-Frequency (RoCoF) in case of
a generation-demand imbalance [1]. In the future, with more
generation coming from wind and solar power, the ability of
the system to maintain frequency within the acceptable range
is diminished. Indeed, photovoltaic systems are connected to
the grid through inverters, which do not exhibit rotational
inertia. Even in the case of inverter-interfaced wind generators,
the inverter electrically decouples the rotor’s rotational inertia
from the system [2].

Transmission System Operators (TSOs) around the world
are concerned with the stability issues associated with large
penetration of renewable energy in their systems. In the United
States, the Electric Reliability Council of Texas (ERCOT) has
studied the effect of low-inertia on the security and reliability
of the grid [3]. As the system inertia at ERCOT continues
to decrease with the growth of wind generation, multiple
technical solutions have been explored to mitigate the adverse
impact on frequency control performance. Most notably, bring-
ing more synchronous inertia online by committing additional
units, committing different units that have higher inertia, or
using synchronous condensers, as well as slowing down the
RoCoF after an event (e.g., generator trip) by increasing the
rate of primary frequency response of the system. Moreover,
ERCOT has recently altered the methodology for determining
Responsive Reserve Service (RRS) from procuring a constant
reserve for all hours to determining necessary amounts of RRS
dynamically based on expected system inertia conditions. On
the other hand, the Irish TSO (EirGrid) is designing new
ancillary services to remunerate providers of rotational or
synthetic inertia [4], [5]. EirGrid also currently imposes limits
on the maximum instantaneous penetration of variable RES
with respect to the total load demand at any point in time.

In systems with low rotational inertia, TSOs must impose
minimum inertia requirements in order to secure frequency
stability and avoid system collapse in case of a severe fault
or a sudden mismatch between generation and demand. With
such new requirements, the traditional Unit Commitment (UC)

problem, i.e., the day-ahead scheduling process to decide
which generators will be committed, may be affected as more
Synchronous Generators (SGs) could be dispatched for the
sole purpose of providing inertia. Nonetheless, the ex-ante
definition of inertia and reserve requirements to cope with the
sudden deviations from generation outages and renewables’
forecast errors, respectively, is a challenging task due to
the uncertain nature of these imbalances. To this end, this
work adopts a stochastic version of the UC problem that
can endogenously account for the aforementioned uncertainty
sources via a set of scenarios that model plausible equipment
contingencies and renewables’ forecast errors. In turn, this
model can pre-position the flexible system resources at the
day-ahead stage, without resorting to deterministic reserve
requirements, in a way that improves the response to the real-
time variations and minimizes the expected system cost.

Several papers have approached the problem of including
inertia requirements in the UC problem. In [6]–[8], the authors
use the swing equation of Center-of-Inertia (CoI), which
allows them to derive a RoCoF constraint and study its effect
on the UC schedule. However, this approach oversimplifies the
problem as it neglects metrics related to frequency deviation
from the setpoint. This problem was addressed in [9]–[13]
with the inclusion of a constraint limiting the post-disturbance
maximum frequency deviation (i.e., frequency nadir). In [9],
the analytic form of frequency nadir as a function of active
power disturbance is derived using a system frequency model
obtained from [14]. The nadir expression is then linearized
and added to the UC model, while considering a fixed sudden
load increase. On the other hand, the studies in [10]–[13]
bypass the explicit modeling of turbine and governor control
as well as their impact on frequency dynamics by imposing
strict assumptions on system damping and total frequency
response provision at each node. Moreover, the primary fre-
quency response provision by SGs (essentially droop control)
is approximated as a constant ramp function of time in order
to decouple the governor control from frequency and simplify
the analytical formulation of the problem. In addition, [13]
optimizes the energy production and multi-speed allocation
of frequency response services, whereas [10] looks at the
impact of wind uncertainty on inertia requirements. While
the proposed simplifications enable the inclusion of a nadir
constraint without the explicit consideration of second-order
frequency dynamics, they oversimplify the actual control im-
plementation and disregard the aggregate impact of governor
damping. Furthermore, none of the aforementioned studies
incorporates the converter interface of RES and the impact
of respective control schemes on the UC formulation.

The contributions of this paper are threefold. First, we
improve the frequency dynamics model in [9] by including
the state-of-the-art converter control schemes of inverter-based
generation, more specifically Virtual Synchronous Machine
(VSM) and droop control. In contrast to the existing liter-
ature, where SG inertia and damping constants are usually
numerically modified in order to compensate for high RES
integration, we analyze a realistic model of a low-inertia
system comprising both SG and converter dynamic models.
This allows us to derive detailed analytic expressions of
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relevant frequency metrics as functions of multiple system
variables (e.g., inertia, damping, aggregate droop gain, etc.) to
be determined by the UC model, as opposed to the approach in
[10] where the inertia constant was the only decision variable
of interest. Moreover, in addition to frequency nadir and
RoCoF, the limitation on Quasi Steady-State (QSS) frequency
deviation is incorporated into the UC formulation. No prior
work considers the dynamics and controls of virtual inertia
units in the derivation of frequency constraints for inclusion
in UC and hence this is the main contribution of the paper.
Secondly, a more straightforward method is proposed to ex-
tract bounds for decision variables contributing to frequency
nadir, which allows us to incorporate the non-linear nadir
constraint in the UC problem in a more accurate way compared
to [9], while at the same time reducing the computational
burden for mid-sized systems. Finally, similar to [10], this
paper includes both the wind uncertainty and potential loss
of generation in the UC model. However, this work presents
a more comprehensive approach towards event probability
computation and structuring of the scenario tree for the two-
stage stochastic UC problem.

The rest of the paper is structured as follows. In Section II,
the derivation of post-contingency frequency dynamics in a
low-inertia, multi-machine system is discussed. The obtained
time-domain, analytic expressions are then incorporated into a
stochastic UC formulation in Section III, after linearizing the
initially non-linear frequency nadir constraint. Subsequently,
the modeling of uncertainties, namely equipment failure and
wind power, in the form of probabilistic scenarios is presented
in Section IV. Section V provides the mathematical formula-
tion of the stochastic UC problem. Finally, Section VI presents
and discusses the simulation results using a modified version
of the IEEE RTS-96 system, whereas Section VII draws the
main conclusions and discusses the outlook of the study.

II. LOW-INERTIA SYSTEM FREQUENCY DYNAMICS

A. Inertial Response and Primary Frequency Control Model

We first focus on deriving a simplified, but sufficiently
accurate, uniform frequency response model of a low-inertia
system previously introduced in [15]. Let us consider a system
comprised of traditional (i ∈ I) and converter-based (j ∈ J )
generators depicted in Fig. 1.

The generator dynamics are described by the swing equa-
tion, with Mg and Dg denoting the normalized inertia and
damping constants corresponding to the synchronous gener-
ators’ CoI. The low-order model proposed in [16] is used
for modeling the governor droop and turbine dynamics; Ti
are the turbine time constants, Ri and Ki are the respective
droop and mechanical power gain factors, while Fi refers
to the fraction of total power generated by the turbines
of synchronous machines. Furthermore, we incorporate the
impact of grid-forming converters, as they are the only type of
power electronic-interfaced units providing frequency support
[17], [18]. A particular focus is set on droop (d ∈ Jd ⊆ J )
and VSM (v ∈ Jv ⊆ J ) control schemes, as two of the
currently most prevalent emulation techniques in the literature,
which in fact have equivalent properties in the grid-forming

Generator Dynamics

Turbine & Governor Control

Converter Control (Droop & VSM)

1

sMg + Dg

Inertia & Damping

Ki1(1 + sFi1Ti1)

Ri1(1 + sTi1)

1st Generator

Kim(1 + sFimTim)

Rim(1 + sTim)

Mth Generator

...

Kd1

Rd1(1 + sTd1)

1st Converter

sMvn + Dvn

1 + sTvn

Nth Converter

...

∆f∆Pe

−

Fig. 1. Uniform system frequency dynamics model.

mode of operation [19]. Here, Td = Tv ≡ Tj are the time
constants of all converters, Rd and Kd are the respective droop
and electrical power gain factors, whereas Mv and Dv denote
the normalized virtual inertia and damping constants of VSM
converters.

B. Analytic Derivation of Frequency Metrics
From Fig. 1, a transfer function G(s) of a general-order

system dynamics can be derived, as follows:

G(s) =
∆f

∆Pe
=

(
(sMi +Di) +

∑
i∈I

Ki(1 + sFiTi)

Ri(1 + sTi)︸ ︷︷ ︸
traditional generators

+
∑
d∈Jd

Kd

Rd(1 + sTd)︸ ︷︷ ︸
droop converters

+
∑
v∈Jv

sMv +Dv

1 + sTv︸ ︷︷ ︸
VSM converters

)−1

. (1)

Assuming similar time constants (Ti ≈ T ) of all synchronous
machines, usually 2-3 orders of magnitude higher than the
ones of converters, justifies the approximation T � Tj ≈ 0.
Now (1) is transformed into the following expression:

G(s) =
1

MT

1 + sT

s2 + 2ζωns+ ω2
n

, (2)

where the natural frequency (ωn) and damping ratio (ζ) are

ωn =

√
D +Rg
MT

, ζ =
M + T (D + Fg)

2
√
MT (D +Rg)

, (3)
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and parameters (M,D) and (Fg, Rg) represent weighted sys-
tem and synchronous generator averages, respectively. More
details on mathematical formulation can be found in [15].

Assuming a stepwise disturbance in the electrical power
∆Pe(s) = −∆P/s, we can derive the time-domain expression
for frequency deviation as well as the nadir (ḟmax), RoCoF
(ḟmax) and steady-state deviation (∆fss) frequency metrics:

∆fmax = − ∆P

D +Rg

(
1 +

√
T (Rg − Fg)

M
e−ζωntm

)
, (4a)

ḟmax = ḟ(t+0 ) = −∆P

M
, (4b)

∆fss = − ∆P

D +Rg
, (4c)

with tm = 1
ωd

tan−1
(

ωd
ζωn−T−1

)
being the time instance of

frequency nadir and ωd = ωn
√

1− ζ2.
The accuracy of the proposed model has already been

investigated and verified in [15]. We can conclude that the
frequency metrics of interest are directly dependent on the
average system parameters M , D, Rg and Fg , and thus
they could be regulated through the UC model. In par-
ticular, RoCoF and steady-state deviation can be explicitly
controlled via ḟmax ∼ M−1 and ∆fss ∼ (D + Rg)

−1,
while nadir can be modeled using a highly non-linear function
∆fmax (M,D,Rg, Fg). Therefore, by incorporating the fre-
quency metrics in the UC problem, it is possible to make day-
ahead generator commitment decisions that ensure satisfactory
real-time frequency response in case of outages.

III. FORMULATION OF FREQUENCY CONSTRAINTS

The aforementioned frequency expressions in (4) are incor-
porated as constraints into the stochastic UC problem, con-
verted into SI and bounded by prescribed ENTSO-E (European
Network of Transmission System Operators for Electricity)
thresholds [20], as follows:∣∣∣∣∣ fb∆PD +Rg

(
1 +

√
T (Rg − Fg)

M
e−ζωntm

)∣∣∣∣∣ ≤ ∆flim, (5a)∣∣∣∣fb∆PM

∣∣∣∣ ≤ ḟlim, (5b)∣∣∣∣ fb∆PD +Rg

∣∣∣∣ ≤ ∆fss,lim, (5c)

with fb = 50 Hz being the base frequency; ∆flim = 0.4 Hz
is the Under-Frequency Load Shedding (UFLS) trigger, while
ḟlim = 0.5 Hz/s and ∆fss,lim = 0.2 Hz are the maximum
permissible RoCoF and steady-state frequency deviation.

Constraints (5b) and (5c) are linear, unlike the non-linear
frequency nadir constraint (5a). In order to avoid the high
computational burden of a Mixed-Integer Non-Linear Program
(MINLP) formulation and have a measurable optimality gap,
a linear approximation of (5a) is used which allows us to
maintain a Mixed-Ineger Linear Program (MILP) formulation
of the stochastic UC problem. By integrating (5a)-(5c) in the
UC problem, we are able to capture the system’s real-time
dynamic boundary conditions already in the day-ahead UC

scheduling phase in a way that improves frequency response
and minimizes the risk of load shedding.

A. Piece-wise Linearization of Nadir Expression

The study in [9] proposes a Piece-Wise Linearization (PWL)
technique for obtaining a linearized expression for frequency
nadir in order to subsequently integrate it into a UC problem.
To improve clarity, this technique is outlined here before com-
paring its computational burden against our proposed approach
introduced in Section III-B. Let us recall from Section II-B that
the frequency nadir expression is a function of four variables
(Rg, Fg,M,D), and as such too complicated to be directly
handled by the PWL. Considering that the aggregate damping
constant is of the form D(Di, Dv, Rd), with respective damp-
ing and droop gains usually strictly prescribed within narrow
ranges by the system operator, it is justifiable to assume a
constant D. Therefore, the frequency nadir becomes a function
of three variables, i.e., ∆fmax(M,Rg, Fg). Hence, the PWL
formulation aims to minimize the following objective function

min
Ψ

∑
η

(
max

1≤ν≤ν

{
aνR

(η)
g + bνF

(η)
g + cνM

(η) + dν

}
−∆fmax

(
R(η)
g , F (η)

g ,M (η)
))2

, (6)

with Ψ = {aν , bν , cν , dν ,∀ν}, being the set of optimization
variables, η denoting the evaluation point and ν referring to the
number of PWL segments. The objective function (6) penalizes
the difference between the appropriate PWL segment and the
nadir function at all evaluation points. Given the convex nature
of the nadir function, the inner max operator chooses the
appropriate PWL segment for each evaluation point by looking
at which segment is closest to the curve at that specific point.
To improve understanding, we elaborate on the mathematical
formulation and the practical implementation of the PWL from
[9] in Appendix A.

Upon obtaining the optimal solution of the model in (6), de-
noted as (a∗ν , b

∗
ν , c
∗
ν , d
∗
ν), the nadir constraint can be integrated

into the MILP UC model by adding a set of inequalities, along
with the nadir threshold constraint of the form fb t3 ≤ ∆flim.
The results for the approximation of frequency nadir function

Fig. 2. PWL of the nadir constraint for M = 9.
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Fig. 3. All possible values of the nadir after a generator loss.

for a test system of 20 generators described in Section VI
are shown in Fig. 2, where a loss of the largest unit is
considered. Note that Fig. 2 showcases the surface plot for
a fixed inertia constant M and thus ignores one degree of
freedom. The original surface is presented in blue, whereas
its PWL-approximation segments are the planes depicted in
various colors. It is important to note that the optimization
problem (6) is computationally intensive and thus in order
to obtain results within reasonable computational time, the
number of PWL segments used for the approximation as well
as the number of evaluation points have to be kept low.

B. Extracting Bounds on Relevant Variables

An alternative approach for linearizing the nadir constraint
and integrating it into the UC problem is to confine the
values of Rg , Fg , M and D within a plausible range to
guarantee that the nadir threshold in (5a) is not violated.
With this approach the damping variable D can easily be
included and does not need to be set constant. The scatter plot
presented in Fig. 3 reflects all possible values of frequency
nadir after the loss of the largest generator, for the same
system as in Section III-A. In the general case, for a system
that comprises |I| generators, there will be 2|I|−1 possible
generator commitment combinations after a generator outage.
By obtaining the set of these dispatch combinations, the values
of Rg , Fg , M and D at which the UFLS threshold is not
violated can be extracted, corresponding to the points below
the shaded plane in Fig. 3. Subsequently, these values are used
to substitute the nadir constraint in the unit commitment as
follows:

Fg ≥ F lim
g , Rg ≥ Rlim

g , M ≥M lim, D ≥ Dlim. (7)

The proposed method provides increased accuracy for the
introduction of frequency nadir as a constraint in the UC
problem. Indeed, as every possible generator combination is
calculated after the loss of any single generator in the system,
the exact values of frequency nadir are known and thus the
constraint will not introduce any error in the optimization.

Table I provides a comparison of the proposed method to the
PWL technique in terms of computational time that is needed
to obtain the equivalent linear nadir expression for a single
value of ∆P . It is clear that the PWL is more time intensive,

TABLE I
COMPUTATIONAL COST OF THE LINEARIZATION METHODS.

Linearization technique Computational time [s]
PWL (η = 3, ν = 4) 70
PWL (η = 4, ν = 4) 7200

Bound extraction 20

especially when aiming for an increased precision. In fact,
running the PWL method with more than 4 evaluation points
and 4 linear segments was not computationally possible using
a standard laptop computer. It should be noted though that for
very large systems, the calculations of 2|I|−1 combinations
for the bound extraction method would become more compu-
tationally expensive, as the computation time increases by a
factor of 2∆|I| for every additional ∆|I| generators included
in the system.

Nevertheless, the computational effort of the bounds ex-
traction method could be drastically reduced through certain
simplifications, therefore making it tractable on a larger scale.
For instance, many combinations of committed generation
could be immediately discarded if they do not meet prescribed
RoCoF limits at the instance of the disturbance. In particular,
one should consider only the system dispatch with aggregate
inertia above Mmin = |∆P |/ḟlim, which could easily be
incorporated into the bound extraction scheme. It should
also be noted that the computational burden arises solely
from the sheer number of all possible generation commitment
schedules, and the calculation of frequency nadir for each
individual scenario can be done independently. Therefore,
parallelization techniques can be readily employed to speed
up the overall computation and improve the tractability of the
proposed approach.

For the purposes of this paper, the proposed bound ex-
traction method will be used as it is significantly faster and
introduces less error when applied to the 20-generator test
system under investigation.

IV. MODELING EQUIPMENT-FAILURE AND WIND POWER
UNCERTAINTIES

This section describes the modeling of uncertainty pertain-
ing to equipment failure and wind power production during
power system operation. The uncertain nature of wind power
production is modeled using a set of scenariosW that captures
the spatio-temporal interdependence of forecast errors, for
every wind farm location and during the whole scheduling
horizon. Each wind power realization scenario ω ∈ W has the
same probability of occurrence denoted by πω .

In terms of equipment failure uncertainty, this work consid-
ers as the set of credible contingencies the unforeseen outages
of synchronous generators, whereas transmission assets are
assumed to be 100 % reliable. In order to reduce the computa-
tional burden, we follow the assumption from [21] considering
that the generation outages happen at a discrete time period,
while failed assets remain unavailable for the rest of the
scheduling horizon, i.e., the Mean Time To Repair (MTTR) is
greater than the scheduling horizon of the day-ahead electricity
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market. For the purpose of assessing the impact of frequency
constraints on the unit commitment schedule, we consider as
contingency period the one in which the power system faces
the highest wind power penetration as scarcity of inertia is
most likely to occur in this time due to the displacement of
synchronous generators from the day-ahead schedule.

To calculate the probability πc associated with contingency
scenario c, we index the set of credible contingencies by
κ = 1, 2, . . . ,K. A(κ, τ) denotes the random event of contin-
gency κ happening within time period τ . Random event B(κ)
corresponds to contingency κ not occurring during the entire
scheduling horizon. We further denote as λκ the inverse of
the Mean Time To Failure (MTTF) κ, i.e., λκ = 1/MTTF.
Considering that we are looking at only one hour in which
the outages may occur and assuming that the time between
two consecutive equipment failures follows an exponential
distribution [22], the probability πc for each contingency
scenario κ is derived from the probabilities of occurrence of
random events A(κ, τ) and B(κ) that are calculated using the
following expressions according to [23]:

π[A(1, τ)] = exp(−λ1τ)(exp(λ1)−1), (8a)
π[A(1, τ)] = π[A(2, τ)] = . . . = π[A(K, τ)], (8b)
π[B(1)] = exp(−λ1τ), (8c)
π[B(1)] = π[B(2)] = . . . = π[B(K)]. (8d)

Assuming statistical independence between all contingencies,
the probability πc0 of the no-contingency scenario is equal to

πc0 =

K∏
κ=1

π[B(κ)], (9)

while the probability πcκ of losing a generator is equal to

πcκ = π[A(1, τ)]

K∏
y=1
y 6=k

π[B(y)], ∀κ = 1, ...,K. (10)

It should be noted that the sum of probabilities πc0 and
πcκ is lower than 1, since sequential contingencies are not
considered. For instance, setting MTTF equal to 1000 h for
all generators, we obtain from (8) π[A(κ, τ)] = 0.9995×10−3

and π[B(κ)] = 0.9990. According to (9) and (10) we obtain
respectively πc0 = 0.9960 and πcκ = 0.9965× 10−3 and thus∑4
κ=0 πcκ = 0.9999 ≈ 1.
Combining the scenarios modeling the equipment failure

and wind power uncertainty into a single scenario set E , each
scenario ξ is defined as a pair of contingency c and wind
power realization ω. For each ξ = {c, ω} the corresponding
probability of occurrence is given as πξ = πω · πc and∑
ξ∈E πξ ≈ 1, assuming that equipment outages and wind

power production are statistically independent events. The
structure of the scenario set E used in the stochastic UC
formulation is illustrated as the scenario tree shown in Fig. 4,
for |K| contingencies and |W| wind power scenarios.

V. STOCHASTIC UNIT COMMITMENT

This section provides the mathematical formulation of
the stochastic unit commitment [24], with the addition of

Fig. 4. Scenario tree for the two-stage stochastic UC problem.

frequency-related constraints. The proposed model is a two-
stage stochastic optimization problem of the form:

min
Φ

∑
t∈T

∑
i∈I

(
CSU
i yit + CSD

i zit + Cipit
)

+∑
t∈T

∑
ξ∈E

πξ

[∑
i∈I

(
C+
i r

+
iξt − C−i r−iξt

)
+
∑
n∈N

Csh lshed
nξt

] (11a)

subject to∑
i∈In

pit+
∑
j∈Jn

wjt − Lnt−∑
m:(n,m)∈L

Bnm(δnt − δmt) = 0, ∀n, t, (11b)

Bnm(δnt − δmt) ≤ fnm, ∀(n,m) ∈ L, t, (11c)
uit − ui(t−1) ≤ uiτ1

i
, ∀i, t, (11d)

ui(t−1) − uit ≤ 1− uiτ0
i
, ∀i, t, (11e)

yit ≥ uit − ui(t−1), ∀i, t, (11f)
zit ≥ ui(t−1) − uit, ∀i, t, (11g)∑
i∈In

[
r+
iξt − r−iξt − pit(1− αiξt)

]
+

∑
m:(n,m)∈L

Bnm(δ̂nt − δ̃nξt − δmt + δ̃mξt) (11h)

+
∑
j∈Jn

(W ∗jξt − wjt − wspill
jξt ) + lshed

nξt = 0, ∀n, ξ, t,

pit + r+
iξt ≤ P iuit, ∀i, ξ, t, (11i)

pit − r−iξt ≥ P iuit, ∀i, ξ, t, (11j)

pit − pi(t−1) + r+
iξt − r+

iξ(t−1) ≤ RU
i , ∀i, ξ, t, (11k)

pit−pi(t−1) − r−iξt+r−iξ(t−1) ≥ −RD
i , ∀i, ξ, t, (11l)

r+
iξt ≤ R+

i αiξt, ∀i, ξ, t, (11m)

r−iξt ≤ R−i αiξt, ∀i, ξ, t, (11n)

Bnm(δ̂nt − δ̂mt) ≤ fnm, ∀(n,m) ∈ Λ, t, (11o)

wspill
jξt ≤ wjξt, ∀j, ξ, t, (11p)

lshed
nξt ≤ Dnt, ∀n, ξ, t, (11q)

kiξt =
PiKi∑
i∈I Pi

uitαiξt, ∀i, ξ, t, (11r)

Fξt =
∑
i∈I

Fikiξt
Ri

, ∀t, ξ, (11s)
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Rξt =
∑
i∈I

kiξt
Ri

, ∀t, ξ, (11t)

Mξt =
∑
i∈I

2Hikiξt
Ki

, ∀t, ξ, (11u)

Dξt =
∑
i∈I

Dikiξt
Ki

, ∀t, ξ, (11v)

ḟlim

fb

Mξt

∑
i∈I Pi +MvWv∑
i∈I Pi +Wv

≥ ∆Pξt, ∀t, ξ, (11w)

Fξt ≥ F lim
ξt , Rξt ≥ Rlim

ξt , ∀t, ξ,
Mξt

∑
i∈I Pi +MvWv∑
i∈I Pi +Wv

≥M lim
ξt , ∀t, ξ, (11x)

Dξt

∑
i∈I Pi +DvWv +RdWd∑
i∈I Pi +Wv +Wd

≥ Dlim
ξt , ∀t, ξ,

∆fss,lim

f0

Dξt

∑
i∈I Pi +DvWv +RdWd∑
i∈I Pi +Wv +Wd

≥ ∆Pξt, ∀t, ξ,
(11y)

pit ≥ 0,∀i, t; wjt ≥ 0,∀j, t; δnt ≥ 0,∀n, t; kiξt, r+
iξt, r

−
iξt ≥ 0,

∀i, ξ, t; δ̂nξt, lshed
nξt ≥ 0,∀n, ξ, t; wspill

jξt ≥ 0, ∀j, ξ, t; (11z)

Fξt, Rξt,Mξt, Dξt ≥ 0,∀ξ, t; uit, yit, zit ∈ {0, 1},

where Φ = {pit, uit, yit, zit, ∀i, t; wjt,∀j, t; δnt,∀n, t;
δ̂nξt,∀n, ξ, t; r+

iξt, r
−
iξt,∀i, ξ, t; w

spill
jξt ,∀j, ξ, t; lshed

nξt ,∀n, ξ, t;
kiξt,∀i, ξ, t; Fξt, Rξt, Mξt, Dξt,∀ξ, t} represents the set of
optimization variables.

The objective function (11a) to be minimized is the total
expected system cost that comprises the day-ahead energy
and the real-time balancing costs. The day-ahead component
consists of the fuel costs Ci as well as the start-up and shut-
down costs. The real-time component includes the re-dispatch
cost from the deployment of upward and downward reserves
based on the corresponding offer prices C+

i and C−i , as well
as the involuntary load shedding at the value of lost load Csh.

Equation (11b) enforces the nodal power balance of the
day-ahead schedule, while network power flows at the day-
ahead stage are restricted by the transmission capacity limits
in (11c). Constraints (11d)-(11e) model the minimum online
and offline time of conventional units based on commitment
variable uit, where parameters τ1

i and τ0
i are defined as

τ1
i = min{t+T 1

i −1, T} and τ0
i = min{t+T 0

i −1, T}, and
T 1
i and T 0

i denote the duration that unit i should remain online
and offline, respectively. Constraints (11f)-(11g) model the
start-up and shut-down of conventional units using the binary
variables yit and zit, respectively. The real-time power balance
for every uncertainty realization ξ is enforced by constraint
(11h). Parameter αiξt models the availability of the generators
to provide reserves, i.e., αiξt is equal to 1 if generator i at
scenario ξ and time t is online and able to provide reserves
and zero otherwise. The scheduled energy production and the
deployment of upward (r+

iξt) and downward (r−iξt) reserves in
each scenario ξ are bounded by the generation capacity limits
of each unit by constraints (11i)-(11j), whereas constraints
(11k)-(11l) enforce the upward and downward ramping limits
accounting for the real-time reserve activation. Constraints
(11m)-(11n) account for the limits of reserve capacity offers.

Transmission capacity limits during real-time operation are
enforced by constraint (11o), whereas wind spillage wspill

jξt and
load shedding lshed

nξt are bounded by the wind power realization
and the nodal demand through constraints (11p) and (11q),
respectively.

The set of constraints (11r)-(11x) models the frequency lim-
its of the power system. The equality constraint (11r) defines
kiξt as the gain factor Ki of generator i scaled by the ratio
of its capacity over the total system capacity, which in turn is
multiplied by the binary variable uit and the parameter αiξt
to indicate that a unit can provide inertial response only if it is
committed and does not face an outage. Similarly, constraints
(11s)-(11v) define average system variables for power fraction,
droop, inertia and damping, respectively. Constraint (11w)
enforces the RoCoF limit, while nadir equivalent and quasi
steady-state frequency bounds are imposed by constraints
(11x) and (11y). Finally, (11z) declares variables and provides
trivial inequalities.

The main advantage of the stochastic UC model is its
ability to endogenously define the reserve requirements and the
number of conventional generators that should be committed
at the day-ahead stage in order to contain real-time deviations
of renewables and ensure sufficient frequency response in
case of equipment outages. Therefore, the resulting generation
schedule explicitly incorporates the frequency constraints, tak-
ing also into account the commitment status of synchronous
generators.

VI. CASE STUDY

A. System Description

In order to analyze the performance of the stochastic UC
model presented in Section V, a modified version of the
IEEE RTS-96 power system from [25] is used, with 48 buses
comprising areas 1 and 2 of the original system. Table II shows
the relevant parameters of different thermal plant types, with
Hi denoting the normalized inertia constant of the generators
(i.e., Mi = 2Hi). The studied system includes 20 generators
and 16 wind farms. It is assumed that six wind farms are
providing virtual inertia; four of them via VSM control, and
the remaining two through equivalent droop regulation. The
UC is ran for two days without frequency constraints in order
to initialize the system prior to introducing the frequency
constraints on days 3, 4 and 5. This is done to ensure the
impact of start-up costs is well distributed and not concentrated
on one day. Therefore, the total simulation horizon is five days
(T = 120 h), whereas the UC schedule is optimized separately

TABLE II
PARAMETERS OF THE THERMAL PLANTS AND VSM.

Type Hi [s] Ki [p.u.] Fi [p.u.] Ri [p.u.] Di [p.u.]

Nuclear 4.5 0.98 0.25 0.04 0.6
CCGT 7.0 1.1 0.15 0.01 0.6
OCGT 5.5 0.95 0.35 0.03 0.6
VSM 6.0 1.0 - - 0.6
Droop - 1.0 - 0.05 -
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Fig. 5. UC dispatch of synchronous generation for respective load and wind
profiles.

for each day, with the last hour of each day used as an input
for the next.

As the set of possible contingencies, the failure of syn-
chronous generators i = {1, 6, 8, 10} is considered. These
generators are of various capacities, ranging from the smallest
to the largest unit in the system. The hour 19 of day 3 (i.e.,
t = 67 h) is selected to be the time instance of a possible
contingency, as this is the hour with high wind penetration
and low demand. Wind power uncertainty is modelled using
ten equiprobable scenarios that are provided in [25]. For
further information on the scenario generation and reduction
techniques that were applied to obtain this scenario set we refer
the interested reader to [26]. Combining these wind power
scenarios with the set of possible contingencies brings the total
number of scenarios considered in the stochastic UC to 50. The
optimization problem is formulated in Python and uses the
Gurobi solver with default parameterization. All simulations
were carried out using a laptop computer with Intel Core i7
CPU with a clock rate of 2.8 GHz and 16 GB of RAM.

B. Results

In this section, the simulation results from the stochastic
UC are presented. Fig. 5 showcases the load and wind power
profiles as well as the aggregate dispatch of synchronous
generation for two UC runs: (i) without frequency constraints
(denoted by w/o FC hereinafter); and (ii) with frequency
constraints (denoted by w/ FC hereinafter). The simulation
times for these two UC runs are 14 minutes 8 seconds and
14 minutes 28 seconds respectively, and thus the increase in
computational time with the inclusion of frequency constraints
can be considered marginal. Furthermore, Table III indicates
the difference in the total number of generators committed
between the two runs. Both Fig. 5 and Table III suggest

TABLE III
COMPARISON OF THE TOTAL NUMBER OF DISPATCHED GENERATORS

THROUGH UC FOR EACH HOUR.

Hour 65 66 67 68 69 70 71 72 73
w/o FC 6 5 4 4 4 4 4 4 4
w/ FC 6 5 10 10 10 10 10 10 10

Fig. 6. Impact of frequency constraints on the aggregate level of system
inertia.

that, although the amount of committed generators increases
significantly, the total SG production is only slightly changed.
This is because the extra generators are solely committed
for the purpose of providing inertia, and are thus operating
at their technical minimum. The production surplus arising
from the additionally committed units is compensated by wind
curtailment and other generators reducing their power output.

The evolution of aggregate system inertia over the course
of the whole scheduling horizon is depicted in Fig. 6. A
noticeable step change in total system inertia at hour 67 reflects
the impact of frequency constraints under contingency, which
subsequently trigger a dispatch of auxiliary synchronous gen-
erators. While the inertia levels do not differentiate between
the two cases during the first two days, on the days following
the potential outage some carryover impacts can be observed.
This is a consequence of the commitment schedule being
radically changed at hour t = 67, thus affecting the UC
schedules in the following days.

Some insightful conclusions can be drawn from Fig. 7,
where the difference between the actual values of the fre-
quency metrics and the respective ENTSO-E thresholds are
depicted. For this purpose, we define a constraint gap ε as
a measure of the relative constraint distance to its limit,
e.g., εnadir = ∆fmax/∆flim − 1. After the completion of
unit commitment, the constraints are re-evaluated using the

Fig. 7. Constraint gaps for different frequency metrics. Dashed lines refer to
the case without frequency constraints.
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Fig. 8. Frequency evolution of the CoI with and without FC for 20 seconds
after the fault instance at t = 67h.

obtained Fg , Rg and M values in order to determine which
frequency criterion becomes binding at the instance of the
fault. A negative constraint gap indicates that the specific
frequency criteria is met with room to spare. It should be
noted that the positive values of ε for t < 67 h indicate
that the frequency threshold would be violated if a fault
occurs. No action is required however, considering that in
this case study we assume that the contingency can only
occur at hour t = 67. Fig. 7 demonstrates that without
explicit consideration of frequency-related constraints in the
stochastic UC model all prescribed frequency limits would
be violated. Moreover, it can be observed that when taking
such constraints into account, the RoCoF constraint is closest
to its limit - corresponding to the smallest constraint gap -
and thus binding. The constraint gap difference between the
two cases at hour t = 67 clearly highlights the importance
of including the frequency constraints in UC in order to
avoid large frequency excursions and undesired triggering of
protection and UFLS schemes. The same observations are also
reflected in Fig. 8 through representation of the time-domain
frequency response of the system following a disturbance.
Understandably, the values of RoCoF, nadir and steady-state
deviation are reduced compared to the case without frequency
constraints, such that all of the ENTSO-E criteria are fulfilled.

Finally, the economic impact of including the frequency
constraints into the stochastic UC model is investigated. The
breakdown of operational costs for day 3 is presented in
Table IV. The addition of frequency constraints leads to a
5 % increase in total expected system costs and a significant
increase in start-up costs by 185 %. This is due to six extra
generators being turned on for providing inertia at the period
of a potential generation failure, as shown in Table III. A
large increase is also seen in reserve scheduling costs, as the

TABLE IV
UNIT COMMITMENT COSTS [$] BREAKDOWN ON DAY 3.

Case Total costs Start-up Operation Reserves
w/o FC 410 545 788 405 561 4 196

w/ FC 432 383 2 248 420 886 9 249

Difference 5.32% 185% 3.78% 120%

reserves are now not only scheduled to cover wind power
uncertainty but also for possible contingencies. The change
in cost is of course highly dependent on the specific system
and the considered contingencies.

VII. CONCLUSION

This paper includes frequency constraints in the UC prob-
lem of a system with large wind power penetration in order
to investigate the impact of frequency dynamics on unit
scheduling. By employing the analytic expressions for post-
contingency frequency response of a multi-machine system, a
set of constraints reflecting the frequency nadir, RoCoF and
quasi steady-state deviation is defined. The highly non-linear
frequency nadir constraint is linearized using two approaches:
(i) a PWL technique adapted from the literature; and (ii) a
proposed simple and efficient method for extracting bounds
on decision variables of interest, which is shown to be com-
putationally superior to PWL. Using the latter approach, the
stochastic UC problem is formulated as an MILP, with an
objective of minimizing the expected system costs against
wind power production and generation outage uncertainties.

Our results show that the inclusion of frequency constraints
in the UC model significantly affects the dispatch of syn-
chronous generators and consequently the expected system
costs. In particular, during anticipated critical events such as
the loss of generation, additional synchronous machines are
needed for providing sufficient inertia and damping in the
process of frequency containment. Such actions lead to a
drastic increase in the UC costs, especially pertaining to start-
up and reserve scheduling, which poses a new challenge as the
operator must find a way to remunerate the units committed for
the sole purpose of frequency regulation. This is an exciting
avenue for future work.

APPENDIX A

For clarity, here we present in more detail the mathematical
formulation of how the PWL optimization problem in (6) is
solved. With ν = 4, the inner max operator from the objective
function in (6) can be eliminated by defining the following
terms:

t3 = max{t2, a4R
(η)
g + b4F

(η)
g + c4M

(η) + d4}, (12a)

t2 = max{t1, a3R
(η)
g + b3F

(η)
g + c3M

(η) + d3}, (12b)

t1 = max{a2R
(η)
g + b2F

(η)
g + c2M

(η) + d2,

a1R
(η)
g + b1F

(η)
g + c1M

(η) + d1}. (12c)

Subsequently, the complete optimization problem in (6) is
reformulated as

min
Ψ

∑
η

(
t3(R(η)

g , F (η)
g ,M (η))

−∆fmax(R(η)
g , F (η)

g ,M (η))

)2
(13)
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Fig. 9. Illustration of the PWL method on a 2-D function.

subject to

a1R
(η)
g + b1F

(η)
g + c1M

(η) + d1 ≤ t1 ≤ a1R(η)
g + b1F

(η)
g

+c1M
(η) + d1 + v1A ∀η, (14a)

a2R
(η)
g + b2F

(η)
g + c2M

(η) + d2 ≤ t1 ≤ a2R(η)
g + b2F

(η)
g

+c2M
(η) + d2 + (1− v1)A ∀η, (14b)

t1 ≤ t2 ≤ t1 + v2A ∀η, (14c)

a3R
(η)
g + b3F

(η)
g + c3M

(η) + d3 ≤ t2 ≤ a3R(η)
g + b3F

(η)
g

+c3M
(η) + d3 + (1− v2)A ∀η, (14d)

t2 ≤ t3 ≤ t2 + v3A ∀η, (14e)

a4R
(η)
g + b4F

(η)
g + c4M

(η) + d4 ≤ t3 ≤ a4R(η)
g + b4F

(η)
g

+c4M
(η) + d4 + (1− v3)A ∀η, (14f)

where v1,v2,v3 are binary variables and A is a sufficiently
large scalar.

We visually illustrate with a simple 2-D example in Fig. 9
how the PWL optimization problem from (13) is solved. There
are four evaluation points set at -7.5, -2.5, 2.5 and 7.5, and
the respective function is approximated with four segments. At
each evaluation point the model identifies the segment closest
to the original curve, and subsequently aims to minimize
the overall shaded area. The proposed technique can then be
expanded and employed on a function of three variables, as
we have done with the expression for frequency nadir.
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