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A passivity-based framework for stability analysis
and control including power network dynamics

Chrysovalantis Spanias, Petros Aristidou, and Michalis Michaelides

Abstract—The ongoing efforts by many countries worldwide
to increase the share of Renewable Energy Sources (RES) in
power generation has changed the nature of existing power grids
and introduced numerous stability-related issues. To address
these problems, more extensive and detailed stability analysis
studies are therefore needed. Driven by this need, in this paper,
we present a passivity-based framework for stability analysis
and control design that allows more accurate modelling of both
the network and the power system components while facilitating
the derivation of completely decentralized stability results. In
particular, the proposed approach relies on the formulation of
the network as a dynamical multi-variable system, which is
shown to be passive, even when the network’s dynamic and lossy
nature are taken into account. The application of decentralized
passivity conditions on bus dynamics is then further exploited,
together with the incorporation of more accurate dynamical
models for the power system components, to guarantee the
asymptotic stability of the interconnected system. Moreover,
we show the opportunities provided by the proposed approach
through the design of a demand-side voltage droop controller
and several dynamic simulations on two typical test systems.

Index Terms—Network dynamics, power systems, passivity,
stability analysis and control, multi-variable dynamical systems.

I. INTRODUCTION

Over the last years, there is an ongoing, worldwide effort
to decelerate climate change and global warming. This effort
which focused on the reduction of greenhouse gas emissions,
led countries to gradually replace the energy production from
fossil-fueled plants with several ”greener” power generation
technologies [1]. As a result, the share of RES in power
generation has significantly increased and is expected to
reach 32% by the end of 2030 [2], [3]. Such a large share
of RES, however, introduced new challenges that were not
encountered in traditional power grids. In particular, the
reduction of systems’ rotational inertia along with the inter-
mittent nature of RES made frequency and voltage deviations
during disturbances steeper and the instability phenomena
that occur more severe [4]–[6]. Moreover, the existing fre-
quency and voltage control mechanisms are becoming too
slow with respect to the disturbance dynamics and thus,
unable to prevent or even effectively damp the occurring large
frequency and voltage deviations.
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Aiming to overcome the above problems, more extensive
power system stability studies are required. Such studies
which take into account accurate dynamical models of both
the network and the power system components, will not only
assist in the design of more effective control mechanisms,
but they will also provide useful information regarding the
stability of the system. An important aspect that has to
be considered, especially when stability is studied using
decentralized conditions, is the consideration of the network’s
dynamic and lossy nature. Currently, the majority of the
related literature adopts a static network formulation, using
either active and reactive power flows, or the line current
components [7]–[11]. For simplicity, networks are often
considered lossless as well, which in turn affects the accuracy
of the analysis and the validity of the derived stability results.
Such examples can be found in [12]–[15]. Nevertheless,
due to the lack of rotational inertia, the network’s response
becomes now comparable to the response of the rest of
the system. Thus, the adoption of a static representation for
power networks leads to more conservative stability results
than those derived in the traditional stability analysis studies
since the dynamic coupling between the bus dynamics with
the grid becomes important, especially for the appropriate
design of RES controllers.

Driven by the need for more accurate modelling within
stability studies, in this paper, we introduce a passivity-
based framework for stability analysis and control of existing
low-inertia power systems wherein more accurate dynamical
models of the network and the power system components are
used. This paper extends and enhances the previous work in
[16], with the following new contributions:

• The network model is formulated as a dynamical multi-
variable system, and it is shown that it is passive,
even when the network’s dynamic and lossy nature are
considered.

• More accurate dynamical models for the power system
components are incorporated in the framework and more
broad decentralized passivity conditions are imposed on
bus dynamics to guarantee the asymptotic stability of
the interconnected system.

• A methodology to design new, more effective, adaptive
control mechanisms is proposed that is based only
on local bus information. Such a decentralized control
design can reduce the complexity of the analysis since it
does not require the implicit knowledge of the system.
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Subsequently, we assess the advantages and the opportuni-
ties offered by the proposed approach and demonstrate its
applicability through the design of a voltage droop, load
controller that can provide the necessary voltage support.
Finally, we verify the significance of the adoption of such a
multi-input/multi-output framework through several dynamic
simulations on a simple test system and the IEEE 68 bus test
system.

The rest of the paper is structured as follows: In Section
II, we provide some basic preliminaries regarding network
modelling. The proposed multi-variable framework is for-
mulated in Section III. The main stability result derived
when this framework is adopted, is presented in Section
IV. Section V provides an assessment of the presented
framework while its applicability is demonstrated through a
design example of a load-side voltage control mechanism in
Section VI. The significance of the proposed approach and
the presented network formulation is verified in Section VII
through dynamic simulations. Finally, conclusions are drawn
in Section VIII.

II. PRELIMINARIES

A power network with arbitrary topology can be described
by a connected and undirected graph (N , E), where N =
{1, 2, . . . |N |} is the set of buses and E ⊂ N × N =
{1, 2, . . . |E|} the set of lines connecting them. The network
structure can be represented by its corresponding incidence
matrix E ∈ R|N |×|E|, similarly to [11]. By arbitrarily
labeling the ends of the line l with a + and a −, the matrix
E is given by

Eil =


+ 1 if i is the positive end of l
−1 if i is the negative end of l
0 otherwise.

(1)

We also use l = (i, j) to denote the link connecting the
network buses i and j through the line l and l→ i to denote
that the line l is connected to bus i. For the formulation of
a dynamical model to represent the network, we now make
the following assumptions regarding the network lines and
the system frequency.

Assumption 1: Network lines can be accurately represented
by symmetric RLC elements (Π-equivalent).

Assumption 2: The network frequency ω, is almost con-
stant at synchronous value ωs (50 or 60 HZ), i.e. ω−ωs ≈ 0.

Assumption 1 states that any line can be represented
by the traditional Π-equivalent similarly to the majority of
the related literature [17]. Moreover, in Assumption 2, we
consider that the variations of the network frequency are very
small which is also a mild assumption considering that the
maximum frequency deviation in the European Network of
Transmission System Operators for Electricity (ENTSO-E)
system is 200mHz (±0.4%) [18].

We also introduce here the diagonal matrices R, L and
C ∈ R|E|×|E| which contain the resistance, the inductance
and the capacitance of each line across the network. We get:

Rml =

{
Rl if m = l

0 otherwise
(2)

Lml =

{
Ll if m = l

0 otherwise
(3)

and

Cml =

{
Cl if m = l

0 otherwise
(4)

where Rl,Ll and Cl denote the resistance, the inductance
and the capacitance of the line l respectively. We note that
Cl could be considered equal to zero when l corresponds to
a Low Voltage (LV) distribution line of the system.

III. FRAMEWORK FORMULATION

A. Network Dynamics

For the derivation of a multi-variable network representa-
tion, we introduce the differential equations describing the
current components at the series impedances and the voltage
components at the shunt capacitances of each line l ∈ E of the
network. Using the network’s incidence matrix we then define
the net injected current components at every bus i ∈ N across
the grid. These equations are subsequently employed in
formulating the proposed dynamical network representation
which is depicted in Fig. 1. As it can be observed, the
power network constitutes a multi-input/multi-output system
originating from the negative feedback connection of the
branch and capacitance dynamics. It should be also noted
that all variables/states of the proposed network model are
expressed on a common system reference frame, i.e. two
common axes that rotate at a specific velocity ω [17].

Firstly, we define the phasors of the current of line l ∈ E
and the voltage of bus i ∈ N in their rectangular form as
follows:

Îl = Ia,l + jIb,l and V̂i = Va,i + jVb,i (5)

Fig. 1. The power network represented as an interconnection of input/output
systems associated with the bus and network dynamics, respectively [16].
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where Ia,l and Ib,l are the current components of line l and
Va,i and Vb,i are the voltage components of bus i. Based on
the phasor representation provided in [19], the state equations
of the line current of line l are given by:

Llİa,l = −RlIa,l − ωLlIb,l + (Va,i − Va,j) (6)

Llİb,l = −RlIb,l + ωLlIa,l + (Vb,i − Vb,j) (7)

where Va,i, Vb,i, Va,j and Vb,j are the voltage components at
buses i and j which are connected through line l. Considering
that Assumption 2 holds, the differential equations can be
further simplified as follows:

Llİa,l = −RlIa,l − ωsLlIb,l + (Va,i − Va,j) (8)

Llİb,l = −RlIb,l + ωsLlIa,l + (Vb,i − Vb,j). (9)

We now define the net injected current components at each
bus of the grid by employing the incidence matrix E. The
net injected current components at bus i are therefore given
by the following set of equations:

Ina,i =

|E|∑
l=1

EilIa,l and Inb,i =

|E|∑
l=1

EilIb,l (10)

which are the Kirchoff’s Current Law equations at each
bus of the grid. By introducing the vectors Ia =
[Ia,1Ia,2 . . . Ia,|E|]

T , Ib = [Ib,1Ib,2 . . . Ib,|E|]
T , Ina =

[Ina,1I
n
a,2 . . . I

n
a,|N |]

T , Inb = [Inb,1I
n
b,2 . . . I

n
b,|N |]

T , Va =

[Va,1Va,2 . . . Va,|N |]
T and Vb = [Vb,1Vb,2 . . . Vb,|N |]

T , the
branch dynamics can be represented by the following dynam-
ical system with inputs the vectors of bus voltage components
Va and Vb, states the vectors of line current components
Ia and Ib, and outputs the vectors of net injected current
components Ina and Inb :[

İa
İb

]
=

[
KA ωsI

E

−ωsI
E KA

] [
Ia
Ib

]
+

[
KB 0
0 KB

] [
Va
Vb

]
(11)[

Ina
Inb

]
=

[
KC 0
0 KC

] [
Ia
Ib

]
(12)

The matrices KA ∈ R|E|×|E| , KB ∈ R|E|×|N| and KC ∈
R|N |×|E| can be deduced from the set of differential equations
(8)-(10) as follows:

KA = −L−1R (13)

KB = L−1ET (14)

and
KC = E (15)

where IE is the R|E|×|E| identity matrix.
On the other hand, capacitance dynamics are derived using

the following state equations of the voltage components at the
shunt capacitance of line l→ i:

Cl→i

2
V̇ c
a,i = ωs

Cl→i

2
V c
b,i − Ica,i (16)

Cl→i

2
V̇ c
b,i = −ωs

Cl→i

2
V c
a,i − Icb,i (17)

where Ica,i and Icb,i are the components of the current ab-
sorbed by the shunt capacitance Cl→i at bus i. Using the
differential equations (16) - (17), capacitance dynamics can
be now expressed in the following compact matrix form:[
V̇ c
a

V̇ c
b

]
=

[
0 ωsI

N

−ωsI
N 0

] [
V c
a

V c
b

]
−
[
C−1 0

0 C−1
] [
Ica
Icb

]
(18)

V c
a , V c

b , Ica and Icb denote the vectors of voltage and absorbed
current components at the shunt capacitances connected to
every bus i = 1, 2, . . . , |N | of the network, respectively.
Furthermore, the matrix IN ∈ RN×N is the corresponding
identity matrix while C can be deduced from equations (16)
- (17) as follows:

C =
1

2
ECET IN . (19)

B. Passivity of network dynamics

We now examine the passivity properties that are revealed
for the network through the adoption of such a dynamical
multi-variable formulation. However, before doing so, we
first provide the following fundamental passivity definition
[20].

Definition 1: Consider the following dynamical system
with inputs u ∈ Rp, states x ∈ Rn and outputs y ∈ Rp

ẋ =f(x, u) (20)
y =h(x, u) (21)

where f : Rn × Rp → Rn is locally Lipschitz, h : Rn ×
Rp → Rp is continuous, f(0, 0) = 0, and h(0, 0) = 0. The
system (20) - (21) is passive if there exists a continuously
differentiable positive semidefinite function V(x) (called the
storage function) such that the following inequality holds:

uT y ≥ V̇(x), ∀(x, u) ∈ Rn × Rp. (22)

Moreover, if uT y = V̇(x) the system (20) - (21) is said to
be lossless.

Lemma 1: The branch dynamics defined in (11)-(12) with
inputs the vectors of bus voltage components Va and Vb,
states the vectors of line current components Ia and Ib, and
outputs the vectors of net injected current components Ina
and Inb constitute a passive 2|N |-input×2|N |-output system.

Lemma 2: The capacitance dynamics defined in (18) with
inputs the vectors of current components −Ica and −Icb and
states/outputs the vectors of voltage components V c

a and V c
b

constitute a lossless 2|N |-input×2|N |-output system.
Remark 1: The passivity of any power network with

arbitrary topology can be also shown through the use of
the Positive-real Lemma for LTI systems [20]–[22]. Particu-
larly, the Positive-real lemma which is the representation of
Kalman-Yakubovich-Popov (KYP) condition using a LMI,
states that a stable Linear Time Invariant (LTI) system1 with

1The branch dynamics (11) - (12) constitute a stable stable system since
the state matrix is negative definite and thus its eigenvalues lie in the left
half of the complex plane.
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minimal state representation Σ = {A,B,C,D} is passive if
and only if there exists a positive definite matrix P such that
the following inequality holds:[

ATP + PA PB − CT

BTP − C −D −DT

]
< 0. (23)

The above inequality was verified for branch dynamics in
[23] through a numerical application on the Kundur’s Four-
Machine Two-Area test system by considering that matrix
Pn = PnT ∈ R2|E|×2|E| is given by:

Pn =

[
L 0
0 L

]
(24)

Remark 2: A similar network representation that takes
into account the network’s dynamic behavior and leads to
identical results as those presented in Lemmas 1 - 2, is
provided in [24]. The difference between the two dynamical
formulations lies in the fact that the network system in [24]
has inputs the vectors of net injected current components and
outputs the vectors of the bus voltages, i.e. uT = [Ina

T Inb
T ]

and yT = [V T
a V T

b ].

C. Multi-variable formulation of bus dynamics

The incorporation of bus dynamics into the proposed
multi-variable framework can be carried out similarly as
in [16]. Particularly, the bus models are expressed in a
common system reference frame instead of their local dq-
coordinates by incorporating Park-Clarke transformation into
bus dynamics. Additionally, we consider that each power
system component constitutes a device that either produces or
consumes power in normal operating conditions and can be
attached to a single bus (e.g. synchronous machines, motors,
wind turbines, etc.) or two buses (e.g.HVDC lines, AC/DC
converters, etc.). As presented in [25], the power system
components can be represented as voltage sources that either
inject or absorb current in the network and hereon, they will
be referred to as injectors. Specifically, the components that
are connected to a single bus will be denoted as single-bus
injectors while for the components that are connected to two
buses we will use the term double-bus injector. The proposed
configuration can be visualized in Fig. 2.

Subsequently, to fit with the network formulation described
in the previous sections, we consider that each single-bus
injector forms a 2-input×2-output system while double-bus
injectors are modelled by a 4-input×4-output system. Each
injector is connected to the network (branch and capacitance)
dynamics as illustrated in Fig. 1. For the representation of
either the single-bus or the double-bus injectors, we now
employ the broad class of dynamical systems (20)-(21). The
vectors u, x and y denote the inputs, the states and the
outputs of the system respectively. The dimensions of the
vectors u and y depend on the type of the component,
that is a single-bus or a double-bus injector. In particular, a
single-bus injector at bus i has inputs the phasor components
of the net injected currents u = (−Iba,i, −Ibb,i) ∈ R2

Fig. 2. An overview of the proposed power system configuration.

and outputs the phasor components of the bus voltages
y = (V b

a,i, V
b
b,i) ∈ R2. On the other hand, a double-bus

injector which is attached to buses i and j, has inputs the
phasor components of the net injected currents at buses i
and j, i.e. u = (−Iba,i, −Iba,j , −Ibb,i, −Ibb,j) ∈ R4 and
outputs the phasor components of the bus voltages at buses
i and j, i.e. y = (V b

a,i, V b
a,j , V b

b,i, V b
b,j) ∈ R4. The

states x ∈ X ⊂ Rn of the dynamical system (20) - (21)
are of arbitrary dimension since they are directly related
to the dynamical model that is employed to represent the
component.

D. Necessary conditions for the asymptotic stability of the
interconnected system

The natural passivity properties that were revealed for the
network along with the proposed system structure2 allows us
to deduce significant stability results for the interconnected
system by only imposing several local passivity conditions on
bus dynamics. However, before presenting these conditions,
it is necessary to provide here the following definitions
regarding the equilibria of an interconnected system and the
property of strict passivity.

Definition 2: The constant vector [x̂T ÎTa ÎTb V̂ cT
a V̂ cT

b ] ∈
R(n+2|E|+2|N |) is an equilibrium of the interconnected sys-
tem (20) - (21), (11) - (12) and (18), if the time derivative
of the states in (20), the line currents in (11) and the shunt
capacitance voltages (18) are equal to zero.

Definition 3: Let the system (20)-(21) of Definition 1 and
its equilibrium (x̂, û) ∈ X×U , where X ⊂ Rn and U ⊂ Rp.
The system (20)-(21) is locally strictly passive if there exists
a continuously differentiable function V (called the storage
function) such that

(u− û)T (y − ŷ) ≥ V̇ + ψ(x− x̂), ∀(x, u) ∈ X × U (25)

2The power system is represented by the negative feedback interconnec-
tion of multiple subsystems, i.e. the branch, the capacitance and the bus
dynamics.



5

for some positive definite function ψ(x − x̂). Additionally
the above system is:
• locally input strictly passive if (u− û)T (y − ŷ) ≥ V̇ +
φ(u− û) for some positive definite φ, ∀u 6= û

• locally output strictly passive if (u− û)T (y− ŷ) ≥ V̇ +
ρ(y − ŷ) for some positive definite ρ, ∀y 6= ŷ.

In both the above cases, the inequalities should hold for all
(x, u) ∈ X × U .

Assumption 3: For each i, j ∈ N , each of the bus dy-
namical systems (20)-(21) satisfies any of the local passivity
properties about [x̂T ÎbTa ÎbTb ], in the sense described in
Definitions 1 - 2.

As in [13] and [16], we assume that the aforementioned
passivity properties hold without specifying the precise form
of the bus dynamics. This allows us to incorporate into the
stability analysis various power system components such as
synchronous generators, inverter-based RES, loads, Flexible
Alternating Current Transmission System (FACTS), High
Voltage Direct Current (HVDC) lines etc. Additionally, more
accurate, higher-order bus dynamical models along with their
voltage and frequency regulation mechanisms can be also
considered. Finally, to guarantee asymptotic convergence to
the equilibria, we will require an additional condition related
to the behaviour of the bus dynamics. This condition which
will be used within the proof of Theorem 1, is a technical
condition often satisfied3.

Assumption 4: The storage functions Vi in Assumption 3
have a strict local minimum at the point x̂i.

IV. MAIN STABILITY RESULT

In this section, we state our main stability result when the
proposed multi-input/multi-output stability analysis frame-
work is adopted. This result which is independent of the
network topology can provide decentralized guarantees for
the asymptotic stability of any power system requiring only
the local passivity conditions of Assumptions 3 - 4 to be
satisfied by bus dynamics. Moreover, it is highlighted that
these stability guarantees are derived without neglecting the
dynamic and lossy nature of the lines.

Theorem 1: Suppose there exists an equilibrium of the
interconnected system (20) - (21), (11) - (12) and (18)
for which the bus dynamics (20) - (21) satisfy4 Assump-
tions 3 - 4 for all i, j ∈ N . Then this equilibrium is
asymptotically stable, i.e. there exists an open neighbour-
hood S about this point such that for all initial conditions
[x̂(0)T Îa(0)T Îb(0)T V̂ c

a (0)T V̂ c
b (0)T ] ∈ S, the solutions

of the system converge to this point.
Remark 3: The above stability result is completely decen-

tralized and identical to the one presented in [16]. However,
in this paper, along with the dynamic nature of the net-
work, we considered that more broad passivity conditions

3The storage function of any observable and controllable linear system
has a local minimum at its equilibrium.

4Bus dynamics shall satisfy at least one of the local conditions presented
in Assumption 3.

are imposed on bus dynamics to guarantee the asymptotic
convergence to the equilibrium. In particular, apart from an
input-strict passivity condition on bus dynamics, we showed
that asymptotic stability can be also deduced through output-
strict and/or strict passive systems. Moreover, when the
storage function of a power system component is positive
definite, even a simple passivity condition can be sufficient
to show that the interconnected system is local asymptotically
stable. This will be shown in Section VI through the design
of an alternative voltage droop load controller.

V. ASSESSMENT OF THE PROPOSED FRAMEWORK

The multi-variable dynamical formulation adopted in this
paper is based on the approach presented in [16] and [26]
where the analysis was carried out in a common system
reference frame, instead of each bus local dq reference frame.
The use of this system reference frame approach allows us to
capture the natural passivity properties of the network which
are then used for the derivation of completely decentralized
stability results for the interconnected system. It should be
mentioned that the passivity of the network is revealed
without resorting to significant simplifications such as the
consideration of lossless and static lines. Such simplifications
are usually necessary when the analysis is carried out using
the local dq coordinates due to the different bus frequencies
and the voltage angles that are appearing in the network
equations [24].

Throughout this work, we additionally take into account
the network’s dynamic behaviour. Such a network repre-
sentation becomes crucial since the dynamic interaction of
inverter-based DER with the rest of the system constitutes
an important aspect in the analysis of the future power grids
where RES share in power generation will dominate. Partic-
ularly, the dynamics of inverter-based DER are on similar
time scales as the line dynamics while their controls are
also significantly faster than synchronous generators’ control
mechanisms [5]. Moreover, as shown in [19], the dynamic
coupling between inverter-based DER and the network is
in many cases unstable although the capability of DER
to employ fast-acting control mechanisms may lead to the
expectation for more efficient frequency and voltage support.

Additionally, the flexibility provided regarding the accu-
rate modelling of a variety of power system components
constitutes another significant advantage of the proposed
framework. In particular, when stability is deduced by in
a completely decentralized manner, the elaborated analysis
becomes more complex and thus difficult to incorporate
higher-order dynamical models. This often coerces scientists
to resort to simpler models that even if they can facilitate
the analysis, they cannot ensure the reliability of the derived
results.

Finally, the proposed passivity-based framework can also
drive the appropriate selection/tuning of the grid-connected
components which are often non-passive. Specifically, the
local passivity conditions presented in Section III can assist
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in the design of more accurate distributed voltage and fre-
quency control mechanisms or the improvement of existing
controllers. At the same time, they can significantly reduce
the complexity of the analysis since are sufficient for ensuring
the overall system stability and robustness without requiring
the explicit knowledge of the network structure. Examples
of the application of such passivity-based techniques can be
found in [13], [16], [24].

VI. EXAMPLE: A LOAD-SIDE VOLTAGE DROOP
CONTROLLER

A. Controller design

To help the reader understand the applicability of the
proposed approach, we present here the design of an alter-
native, demand-side voltage droop controller, This control
mechanism was initially introduced in [27] to provide the
necessary voltage support to the distribution grid. In partic-
ular, we consider that all loads are represented by a constant
impedance model as follows:[

V b
a,i

V b
b,i

]
=

[
RL

i −XL
i

XL
i RL

i

] [
−I la,i
−I lb,i

]
(26)

where RL
i and XL

i denote the resistance and the impedance
of the load5 connected at bus i respectively. We also consider
that a part of these loads is controllable and thus can
participate in system operation. We thus introduce a nega-
tive feedback control mechanism that can regulate voltage
through the control of the current absorbed by these loads.
The proposed mechanism can be illustrated in Fig. 3 and is
described by the following set of differential equations:[

İcla,i
İclb,i

]
= Ac

i

[
Icla,i
Iclb,i

]
+Bc

i

[
V b
a,i − V

ref
a,i

V b
b,i − V

ref
b,i

]
. (27)

Icla,i and Iclb,i, and V ref
a,i and V ref

b,i denote the phasor compo-
nents of the mechanism’s output current and the reference
voltage at bus i respectively. The matrices Ac

i , Bc
i ∈ R2×2

in (27) are given as follows:

Ac
i =

1

Tc,i

[
−1 0
0 −1

]
and Bc

i =
1

Tc,i

[
kca,i kcb,i
−kcb,i kca,i

]
where kca,i, k

c
b,i ≥ 0 are the gain constants and Tc,i is the

time constant of the controller.
Remark 4: All variables within load dynamics (26) and

(27) are expressed in a common reference frame as described
in Section III. Moreover, the reference inputs V ref

a,i and
V ref
b,i are derived through the Park-Clarke transformation

of a voltage reference setpoint V ref
i using the same angle

difference δi.

5The negative sign in (26) appears due to the fact that Ila,i and Ilb,i denote
here the components of the net absorbed current rather than the net injected
current.

Fig. 3. The load-side voltage controller connected in a negative feedback
arrangement to bus/load dynamics.

B. Passivity of load dynamics

To guarantee the asymptotic stability of the interconnected
system presented in Fig. 1, the controllable load dynamics
(26) and (27) and the rest of the power system components
must satisfy one of the local passivity conditions presented
in Definitions 1 - 2. We, therefore, provide the following
proposition wherein we show that the controllable load
dynamics are passive and thus can assist in power system
operation during disturbances.

Proposition 1: The controllable load dynamics (26) and
(27) constitute a 2-input × 2-output passive system.

Remark 5: An important advantage of this voltage droop
controller lies in the fact that it can be employed in either
centralized or decentralized fashion. Particularly, the voltage
setpoints can be defined locally at the loads (e.g. thermal
loads controlled by power electronics) or can be received
from a SCADA/DMS during voltage dips or rises.

Remark 6: As we are about to show in Section VII,
although we do not require all power system components
to satisfy any of the aforementioned passivity conditions,
the employment of the presented voltage droop controller
on several loads can significantly improve the response of
the system during disturbances. This relies on the fact that
additional damping is provided to the grid through the
utilization of the proposed control scheme.

VII. SIMULATIONS

In this section, we verify the significance of our stability
analysis framework through several dynamic simulations on
the two typical test systems that are presented in Figs. 4 and
5 respectively. In particular, we first examine the dynamic
response of the system during a disturbance when the pro-
posed dynamical network model is adopted. The investigation
is carried out on the simple four area test system that is
illustrated in Fig. 4. This test system consists of four areas
that are connected through a typical 230kV transmission line
of various lengths and of the following characteristics: r =
0.0001pu/km, x = 0.001pu/km and b = 0.00175pu/km
(Sb = 100MVA). For the representation of all areas, we use
the classical third-order synchronous generator model and the
ZIP load model [17], [20]. Both models can be written in the
form (20) - (21) and consequently can be easily incorporated
into the stability analysis using the proposed framework.
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To show the effect of such a dynamic network modelling,
we consider a sudden increase of 100MW of load at area
2 under the following three power system conditions: (a)
low RES penetration, (b) medium RES penetration and (c)
high RES penetration. These conditions were achieved by
increasing the RES penetration as a constant PQ injection
at the four buses. At the same time, we decreased the
synchronous generator output which in turn yields in a
significant reduction of system’s inertia. The results of these
simulations are illustrated in Figures 6 - 11 through the
representation of the voltage and the frequency response at
area 2 when either a lossless, a static and a dynamic network
model are adopted. As we observe from the figures, the use
of a lossless network model results in a less accurate voltage
and frequency response since although the line resistance is
significantly smaller than its inductance, it still affects the
voltage and the frequency across the grid. On the other hand,
both the static and dynamic network representation result in
a quite similar response. However, while the RES penetration
increases, considerable low-frequency oscillations are appear-

Fig. 4. Single line diagram of a simple four area test system.

Fig. 5. Single line diagram of the IEEE 68-bus test system (New York /
New England).

ing when a dynamic network model is used. These voltage
and frequency oscillations are becoming larger and faster as
both the line’s length and the RES penetration increase. This
directly leads to the conclusion that as RES share in power
generation increases, more accurate dynamical models are
necessary to ensure the reliability and the robustness of the
system.

The effectiveness of the presented passivity-based frame-
work to guarantee system stability in a completely decentral-
ized manner and design new distributed control schemes is
presented through several dynamic simulations on the IEEE
68 bus test system [28]. For these simulations, we also
consider that a sudden load change of 100MW occurs at
buses 1, 7, 21, 28 and 46 while loads at buses 3, 4, 16, 24, 26,
33, 40, 47, 49 and 50 are equipped with the proposed voltage
control mechanism. The gain and the time constants of the
controller are set at all controllers as follows: Ka = 5pu,
Kb = 1pu and Tc = 0.1sec. The effect of the proposed
controller is illustrated in Figs. 12 - 13 by the voltage and the
frequency deviation at bus 32 when Power System Stabilizers
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Fig. 6. The voltage deviation at area 2 under low RES penetration
conditions.
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Fig. 7. The voltage deviation at area 2 under medium RES penetration
conditions.
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(PSSs) are applied to generators or not. As we observe from
both figures the proposed controller can significantly improve
the voltage response of the system in both cases. We should
mention that this improvement on both the voltage and the
frequency was achieved without requiring all power system
components (synchronous generators) to satisfy certain pas-
sivity conditions. Instead, the employment of such voltage
droop controller at the loads provided additional damping to
the system and thus increased its reliability and robustness
during disturbances.

VIII. CONCLUSIONS

In this paper, we have presented a passivity-based frame-
work for stability analysis and control design that allows
more accurate modelling of both the network and the power
system components while facilitating the derivation of com-
pletely decentralized stability results for the system. Through-
out this work, it was also shown that the proposed framework
could be exploited for the design of more accurate, distributed
control schemes that can enhance the system’s stability and
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Fig. 12. The magnitude of the line current of a typical overhead 132kV
transmission line.
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Fig. 13. The magnitude of the line current of a typical overhead 220kV
transmission line.

robustness without requiring the implicit knowledge of the
system. In particular, the proposed approach relied on the
formulation of the network as a dynamical multi-variable
system, which it was shown to be passive, even when the
network’s dynamic and lossy nature are taken into account.
The passivity of the network was then exploited by introduc-
ing a broad class of bus dynamics to allow the incorporation
of various power system components and certain decentral-
ized, passivity conditions that can guarantee the asymptotic
stability of the interconnected system. Moreover, we assessed
the advantages and the opportunities offered by the proposed
approach and demonstrated its applicability through the de-
sign of a voltage droop, load controller. Finally, we verified
the significance of the adoption of such a multi-input/multi-
output framework through several dynamic simulations on a
simple test system and the IEEE 68 bus test system.

APPENDIX

Proof of Lemma 1: In order to prove that the dynamical
system (11)-(12) is passive we use the following storage
function:

VN (Ia, Ib) =
1

2

[
ITa ITb

] [L 0
0 L

] [
Ia
Ib

]
. (28)

The derivative of the above storage function with respect to
time is therefore given by:
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V̇N =
[
ITa ITb

] [L 0
0 L

] [
İa
Ib

]
=
[
ITa ITb

] [−R −ωsL
ωsL −R

] [
Ia
Ib

]
+
[
ITa ITb

] [ET 0
0 ET

] [
Va
Vb

]
= −ITa RIa − ITb RIb +

[
Ina

T Inb
T
] [Va
Vb

]
(29)

Since the network’s resistance matrix R is a positive definite
matrix, equation (29) satisfies V̇N ≤ uT y which completes
the proof. �

Proof of Lemma 2: For the proof of the Lemma 2, we use
the following storage function for the capacitance dynamics
(18):

VC(V c
a , V

c
b ) =

1

2

[
V c
a
T V c

b
T
] [C 0

0 C

] [
V c
a

V c
b

]
. (30)

The time derivative of the storage function (30) is therefore
given by:

V̇C =
[
V c
a
T V c

b
T
] [C 0

0 C

] [
V̇ c
a

V c
b

]
=
[
V c
a
T V c

b
T
] [ 0 ωsC
−ωsC 0

] [
V c
a

V c
b

]
+
[
V c
a
T V c

b
T
] [IN 0

0 IN

] [
−Ica
−Icb

]
=
[
V c
a
T V c

b
T
] [−Ica
−Icb

]
.

(31)

From (31), we observe that V̇C = uT y which implies that
capacitance dynamics constitute a lossless system. �

Proof of Theorem 1: For the proof of Theorem 1 we
employ the storage functions that follow from the passivity
property of the branch, the capacitance and the bus dynamics
to construct a candidate Lyapunov function for the intercon-
nected system (20) - (21), (11) - (12) and (18). Stability will
be then deduced using LaSalle’s Invariance Principle [20].

We first consider the following candidate Lyapunov func-
tion for the interconnected system: (20)-(21), (11)-(12) and
(18):

VS = VN + VC +

|N |∑
i=1

Vi. (32)

Considering that Assumptions 1 - 4 hold, we then calculate
the derivative of the above Lyapunov function with respect
to time. We get:

V̇S = V̇N + V̇C +

|N |∑
i=1

V̇i

= −(Ia − Îa)TR(Ia − Îa)− (Ib − Îb)TR(Ib − Îb)

−
|N |∑
i=1

(
ψi(x− x̂) + φi(u− û) + ρi(y − ŷ)

)
(33)

whenever (Îba,i, Î
b
b,i) ∈ Ui and x̂i ∈ X . Since the network’s

resistance matrix R and the functions ψi(x− x̂), φi(u− û)
and ρi(y− ŷ) are positive definite, the equation (33) becomes
V̇S ≤ 0.

Subsequently, we use the LaSalle’s theorem to prove the
asymptotic convergence of the system’s trajectories to the
equilibrium point. According to Assumption 4, the candi-
date Lyapunov function VS(x, Ia, Ib, V

c
a , V

c
b ) has a strict

local minimum at the equilibrium of the interconnected
system [x̂T ÎTa ÎTb V̂ cT

a V̂ cT
b ]. Thus, for a sufficiently

small ε > 0 there exists a compact positively invariant set
Ξ := {VS(x, Ia, Ib, V

c
a , V

c
b )−VS(x̂, Îa, Îb, V̂

c
a , V̂

c
b ) ≤ ε, x̂ ∈

Ξ, Ξ connected} that lies in the neighborhoods stated in
Assumption 3. LaSalle’s Invariance Principle can now be ap-
plied with the function VS on the compact positively invariant
set Ξ. This guarantees that all solutions of the interconnected
system (20) - (21), (11) - (12) and (18) with initial conditions
[x(0)T Ia(0)T Ib(0)T V c

a (0)T V c
b (0)T ] ∈ Ξ converge to the

largest invariant set within D := Ξ∩{x : V̇S = 0}. From As-
sumptions 3 - 4, we get that the only invariant set in D is the
equilibrium point [x̂T ÎTa ÎTb V̂ cT

a , V̂ cT
b ]. Therefore, for any

initial condition [x(0)T Ia(0)T Ib(0)T V c
a (0)T V c

b (0)T ] ∈ Ξ
we have convergence to the equilibrium point, which com-
pletes the proof. �

Proof of Proposition 1: For the proof of the Proposition
1 we consider the following storage function for the load
dynamics (26) and (27):

VL
i =

Tc,i

2(kca,i
2 + kcb,i

2)
[Icla,i I

cl
b,i]

[
kca,i −kcb,i
kcb,i kca,i

] [
Icla,i
Iclb,i

]
. (34)

The positive semidefiniteness of the above storage function
follows here easily from the skew-symmetry of the matrix
Bc

i and the fact that both the gain constants kca,i and kcb,i are
positive. The controllable load dynamics are therefore passive
if the following inequality holds:

uTi yi = [−Iba,i − Ibb,i]
[
V b
a,i

V b
b,i

]
≥ V̇L

i (35)

for all i ∈ N . Considering that ∆Va,i = V b
a,i − V

ref
a,i and

∆Vb,i = V b
b,i − V

ref
b,i , we then calculate the derivative of the

storage function (34) which is given by:

V̇L
i =

−1

(kca,i
2 + kcb,i

2)
[Ica,i I

c
b,i]

[
kca,i −kcb,i
kcb,i kca,i

] [
Ica,i
Icb,i

]
+ [Ica,i I

c
b,i]

[
∆Va,i
∆Vb,i

]
=

−kca,i
2

(kca,i
2 + kcb,i

2)
(Icla,i

2
+ Iclb,i

2
)

−RL
i (I la,i

2
+ I lb,i

2
) + [−Iba,i − Ibb,i]

[
V b
a,i

V b
b,i

]
.

(36)

Since RL
i , k

c
a,i, k

c
b,i ≥ 0, the equation (36) satisfies V̇L

i ≤
uTi yi and this completes the proof �.
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