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Abstract—In practice, electrification of remote and islanded com-
munities with no connection to the main grid is entangled with
many techno-economic issues. These technical and more importantly
economical challenges often justify the use of Micro-Grids (MGs) as
self-sufficient electrical networks with a group of controllable/non-
controllable consumers and producers in remote and islanded areas.
However, the optimal design of sustainable MGs, even in small
communities, is a complex optimisation problem due to the uncertain
nature of load consumption and renewable production as well
as the non-convex characteristics of network constraints. In this
paper, we propose a model to design sustainable MGs using the
notion of Distributionally Robust Optimisation (DRO) to handle
the uncertainties arising from forecast data wherein the non-convex
AC power flow equations are reformulated into convex constraints.
Furthermore, a three-step approach is introduced to recast the tri-
level DRO-based model into a tractable single-stage Mixed-Integer
Linear Programming (MILP) problem. The proposed approach is
tested on a modified Europrean CIGRE 18-bus test network and its
performance is compared with the stochastic optimisation approach.

Index Terms—Distributionally Robust Optimisation, Investment
Planning, Micro-Grids, Stochastic Optimisation.

I. INTRODUCTION

A. Motivation and Background

Micro-Grids (MGs) have enabled off-grid communities to
economically access electricity without the requirement for poten-
tially high-cost long-distance energy infrastructure. Such systems
have globally enhanced the electrification efforts and resilience
of energy supply. Their sustainability is normally ensured by
the utilisation of various Renewable Energy Sources (RESs).
However, the intermittent power production of RESs adds to the
level of uncertainty in the network. To ensure the reliability of the
islanded MGs, system designs that remain robust to the possible
adverse impacts of uncertainty are crucial. Additionally, the sys-
tem security during system operation should be upheld concerning
the technical limits on under/over voltage and maximum line
flows. The cost-effective design of islanded MGs involves the
solution of optimisation models for investment or reinforcement
planning. Therefore, the handling of different uncertainties is key
to the secure and resilient operation of MGs.

B. Related Research Works

Available research works on non-deterministic investment plan-
ning that account for the uncertainty of load demand and renew-
able power generation in active distribution networks and MGs
include: Stochastic Optimisation (SO) and Robust Optimisation
(RO). SO-based models obtain a solution that is optimal on
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average for all scenarios capturing the uncertainty spectrum [1–4].
The quality of the optimal solution in SO-based models is largely
dependant on the number of available scenarios or historical data.
On the contrary, RO-based models obtain a solution that is optimal
for the worst scenario of a bounded uncertainty set capturing all
realisations of uncertain parameters [5–7]. The uncertainty set is
constructed typically assuming no distributional knowledge about
the underlying uncertainty. RO usually requires less computa-
tional effort compared to SO, but provides highly conservative
solutions that may result in significant over-investment.

Another non-deterministic approach bridging between RO and
SO is based on Distributionally Robust Optimisation (DRO),
where the optimal solution is obtained as the worst-case expected
cost over a family of possible probability distribution functions
(PDF) characterising the uncertain parameters in a bounded ambi-
guity set [8, 9]. The parameters of the ambiguity set are specified
based on available distribution information, including empirical
mean, variances, co-variances, distance from a known distribution
[10]. Hence, the solution provided is robust against inaccuracies
in the probability data. It therefore provides an intermediate and
more practical solution that is less dependant on available data
and less conservative. The recourse decisions in a DRO problem
should adapt to all uncertain outcomes in the ambiguity set,
thus making the problem generally NP hard. The nature of the
ambiguity set is key in facilitating the tractable reformulations that
can be solved by available numerical solvers. Different solution
techniques are presented in the literature to recast DRO problems
into tractable counterparts. Examples include reformulation-based
approaches [11, 12] with affine policies as well as decomposition-
based approaches with cutting planes [10, 13, 14].

In this paper, a DRO-based model for optimal investment
planning of islanded MGs is proposed. We employ a moment-
based ambiguity set due to its computational tractability as
compared to other techniques [15]. Also, a data-driven approach
is utilised to construct the ambiguity set where the empirical
mean is inferred from historical data of energy consumption and
renewable production profiles.

C. Contributions

The main contributions of this paper are three-fold:
1) We propose a formulation of a DRO-based investment

planning model for islanded MGs in remote areas aimed
at immunising the optimal investment plan against uncer-
tainties in forecasted loads and renewable generations. In
the proposed approach, temporal variations of loads and
renewable generations during the entire planning horizon
are modelled by a sufficient number of representative



days where these representative days are extracted by the
agglomerative hierarchical clustering [16]. Furthermore, a
data-driven ambiguity set is presented in this paper to
characterise the unknown PDFs pertaining to representative
loads and renewable generations.

2) We employ the duality theory and multi-period linear
decision rules (LDRs), respecting the non-anticipativity
nature of the short-term operational decisions, to recast the
proposed DRO-based model into a tractable mixed-integer
linear programming problem (MILP).

3) We benchmark the algorithm performance against a SO-
based model using the CIGRE 18-bus test network. Indices
concerning computational efficiency, investment costs, and
expected operational costs, are presented.

The rest of the paper is organised as follows. Section II
introduces the mathematical formulation for the proposed DRO-
based planning model and the definition of the ambiguity set.
Section III presents the three-step approach proposed to obtain
a tractable robust reformulation of model. The numerical results
assessing the performance of the proposed algorithm are discussed
in Section IV, while conclusions are drawn in Section V.

II. DISTRIBUTIONALLY ROBUST PLANNING MODEL

A. Modeling Preliminaries

Bold letters are used to indicate vectors while entries of vectors
are denoted by regular letters. The transpose of a matrix is denoted
by “′”. This work considers a radial balanced network represented
by a connected graph G(N , E), with N := {0, 1, . . . , N} denoting
the set of network nodes including the substation node 0, and E ⊆
N ×N designating the set of network branches. The distribution
network hosts a number of producers/consumers, where S ⊆ N
indicates the subset of nodes with diesel generators, R ⊆ N
the subset of nodes with RESs, B ⊆ N the subset of nodes
with battery, D ⊆ N the subset of nodes with loads. The set of
nodes with generators is thus obtained by the following set union
M := S ∪ R ∪ B. The set of respective units at node i ∈ N are
given by Si ⊆ S, Ri ⊆ R, Bi ⊆ B, and Di ⊆ D. Cardinallity of
the previously defined sets is denoted by: nd := |D|, ns := |S|,
nb := |B|, nl := |L|, and nr := |R|, respectively. Indices s, r, b
and d are associated with diesel generators, RESs, battery units
and load.

For each generator n ∈ M, variables pnto and qnto represent
active and reactive power injections; superscript “N” denotes the
non-adjustable decisions terms based on forecasted parameters
while superscript “A” relates to the adjustable decisions due to
realisation of the forecast errors. Each node i ∈ N is connected to
an upstream/downstream node iup/idn by a branch with resistance
riidn and reactance xiidn , while N dn is a set of nodes connected
downstream to node i. Piidn /Qiidn denotes the active/reactive
power flow in branch iidn ∈ E while S is the apparent power
flow. The upper/lower limit for quantity • is indicated by •/•.

In this paper, the uncertain active renewable power generations
(r ∈ R) or loads (d ∈ D) at timestep t ∈ T and operating
condition o ∈ O is expressed as:

ũ{r/d}to = uN
{r/d}to +∆ũ{r/d}to (1)

where uN
{r/d}to denotes the expected/forecasted value of the

power while ∆ũ{r/d}to = û{r/d}to−ǔ{r/d}to is the forecast error
where û{r/d}to/ǔ{r/d}to denotes the upward/downward deviation
from the forecast value. As uncertainties of both electricity

consumption and renewable production are considered, ũ{r/d}to
is defined as:

ũto =

{
p̃dto = pNdto + p̂dto − p̌dto, ∀d
p̃rto = pNrto + p̂rto − p̌rto, ∀r

}
, ∀t, o (2)

where p̃dto relates to the uncertain loads and p̃rto relates to the
uncertain renewable generations. In this work, a constant load
power factor is considered where cos θdto =

pN
dto√

(pN
dto)

2+(qNdto)
2

.

Therefore, the uncertain reactive loads are defined as: q̃dto =
tanθdto · p̃dto. Similarly, a constant reactive power control for
RESs is adopted, i.e., − tanϕr · p̃rto ≤ qrto ≤ tanϕr · p̃rto,
where parameter cosϕr is the minimum power factor set by
the system operator. The uncertain reactive power is therefore
defined as: q̃rto = tanϕr · p̃rto. Note that uncertain reactive
power injection/absorption is a function of the uncertain active
power and not required to be defined explicitly.

B. Ambiguity Set Model

The compact form of the tri-level DRO model is presented as:

min
χinv,χopr

{
Θinv(χinv) + max

P∈U
EP (Θ

opr(χopr, ũ))
}

(3)

where Θinv/Θopr are the the investment/operational costs and
χinv/χopr the vectors of investment/operational variables while
EP calculates the expected value of the operational costs. Also, ũ
defines the vector of the uncertain variables while the ambiguity
set U characterises the distribution of the uncertain parameters for
the entire planning horizon and is obtained as a Cartesian product
of the set at each time step for all operating scenarios:

U =
∏

t∈T,o∈O
Uto (4)

where

Uto =

 Pto :

EPto
(p̃dto) = pNdto, ∀d

EPto
(p̃rto) = pNrto, ∀r

Pt

{
p̃dto ∈ Vto

p̃rto ∈ Vto

}
= 1,

 (5)

In (5) the first and second lines indicate that the mean of
the uncertain parameters is defined by their respective forecast
values while the third line guarantees that all realisations of
uncertainties are within the uncertainty set Vto. We adopt the
polyhedral uncertainty set proposed in [17] where a budget of
uncertainty Γ is used to control the conservatism. Vto is expressed
by constraints:

Vto =



p̃dto = pNdto + p̂dto − p̌dto, ∀d
p̃rto = pNrto + p̂rto − p̌rto, ∀r
0 ≤ p̂dto ≤ p̂dto, 0 ≤ p̌dto ≤ p̌dto, ∀d
0 ≤ p̂rto ≤ p̂rto, 0 ≤ p̌rto ≤ p̌rto, ∀r

0 ≤

(∑
d∈D

(
p̂dto
p̂dto

+
p̌dto
p̌dto

)
+
∑
r∈R

(
p̂rto
p̂rto

+
p̌rto
p̌rto

))
≤ Γto


(6)

C. Investment Planning Model

We expand the formulation of the proposed DRO-based plan-
ning model in (3) as follows:



1) Objective: The term Θinv(χinv) in (3) is given by:

Θinv =
∑
b∈B

Cb · zb +
∑
s∈S

Cs · zs +
∑
r∈R

Cr · zr (7a)

where Cb/s/r is the investment cost of a particular unit and zb/s/r
is the binary variable indicating the investment status of a unit.
Also, the term Θopr(χopr) in (3) is defined as:

Θopr =
∑
o∈O

∑
t∈T

(∑
s∈S

Cop
s · psto +

∑
r∈R

Cop
r · prto

+
∑
d∈D

Csh
d · p̃dto · (1− zdto) +

∑
i∈N

ϵ · qauxito

) (7b)

here Cop
s/r is the marginal operational cost of each unit while

Csh
d is the penalty cost of load shedding. Variable zdto is used

to indicate the connection status of a load. To ensure the nodal
reactive power balance, a small cost ϵ has been applied to the
magnitude of reactive power generation denoted by the auxiliary
variable qauxito . In the following, a definition of the constraints
applied to the model is presented.

2) Power Flow Constraints: A linearized version of the ‘Dis-
tFlow’ model [18] is used to formulate the power flow equations
in (7c)-(7e), where vito denotes the square magnitude of voltage
at each node i ∈ N , time period t ∈ T , and operating condition
o ∈ O:∑

s∈Si

psto +
∑
r∈Ri

prto +
∑
b∈Bi

(pdchbto − pchbto) + Piupito

−
∑

idn∈Ndn

Piidnto ≥
∑
d∈Di

p̃dto · zdto, ∀i, t, o
(7c)

∑
s∈Si

qsto +
∑
r∈Ri

qrto +Qiupito

−
∑

idn∈Ndn

Qiidnto ≥
∑
d∈Di

q̃dto · zdto, ∀i, t, o
(7d)

viupto = vito + 2 (riupi · Piupito + xiupi ·Qiupito) , ∀i, t, o (7e)

− qauxito ≤
∑
s∈Si

qsto +
∑
r∈Ri

qrto ≤ qauxito , ∀i, t, o (7f)

qauxito ≥ 0, ∀i, t, o (7g)

where superscript “ch/dch” indicates the charge/discharge power
of the battery units. Different generators in the network have the
capability to inject/absorb reactive power. It is required that the
nodal reactive power balance is respected, given the mode of
operation, i.e., injection/absorption. This is ensured when equality
exists between the left-hand-side and right-hand-side of (7d). This
requirement is met using the non-negative auxiliary variable qauxito

in (7f) to which a small cost is applied in the objective function
such that equality in (7d) is maintained.

3) Dispatchable Generation Constraints: Diesel units are
fully dispatchable while renewable units are assumed to be
dispatchable-down within their capacity limits.

0 ≤ psto ≤ ps · zs, −qs · zs ≤ qsto ≤ qs · zs, ∀s, t, o (7h)

− rpdns ≤ psto − ps(t−1)o ≤ rpups , ∀s, t, o (7i)

0 ≤ prto ≤ p̃rto · zr, ∀r, t, o (7j)

− tanϕ · p̃rto · zr ≤ qrto ≤ tanϕ · p̃rto · zr, ∀r, t, o (7k)

Binary variable zs/zr indicates the investment status of the
diesel/renewable unit limited by its maximum active /reactive

power capacity denoted by p/q . The maximum capacity of each
renewable unit is equal to the available usable power of the unit
at a given time. The maximum ramp up/down limits rpups /rpdns
are defined in (7i).

4) Constraints of Battery Units: Constraint (7l) limits
the charging/discharging power of battery units within their
charge/discharge capacities while (7m) prevents simultaneous
charging zch

bto and discharging zdch
bto of the battery given its invest-

ment status zb. The battery state-of-charge (SOC) at each hour
is limited by the maximum/minimum energy limit eb/eb in (7n),
while the initial (eini

bo) and final SOC are set by constraint (7o),
given charging/discharging efficiency ξch

b /ξdch
b .

0 ≤ pdchbto ≤ pdchb · zdchbto , 0 ≤ pchbto ≤ pchb · zchbto, ∀b, t, o (7l)

zdchbto + zchbto ≤ zb, ∀b, t, o (7m)

eb · zb ≤ eini
bo +

t∑
τ=1

(
ξchb · pchbτo −

1

ξdchb

· pdchbτo

)
≤ eb · zb,

∀b, t, o (7n)∑
t∈T

(
ξchb · pchbto −

1

ξdchb

· pdchbto

)
= 0, ∀b, o (7o)

5) Thermal Loading and Voltage Constraints: Quadratic con-
straint (7p) denotes the secure line loading limits. They are lin-
earized using a piece-wise linear approximation approach defined
in [19], while (7q) defines the limits on nodal voltages.

(Piupito)
2 + (Qiupito)

2 ≤ (Siupi)
2, ∀i, t, o (7p)

v ≤ vito ≤ v, vto|i=0 = 1, ∀i, t, o (7q)

D. Compact Matrix Formulation

For a clear presentation, the overall formulation can be pre-
sented as a compact matrix expressed below:

min
χinv,χopr

{
Θinv(χinv) + max

P∈U
EP (Θ

opr(χopr, ũ))

}
(8a)

s.t. Aχinv +Bh(χopr, ũ) ≥ q +Qũ, ∀ũ ∈ V (8b)

Constraints (7c)-(7q) are generalised into (8b) where function
h(χopr, ũ) is associated with the effect of the uncertain parame-
ters on the decision variables during system operation, while A,
B, q and Q are constant matrices. Set V is the uncertainty set
defined in (6).

E. Transformation of the Worst-Case Expectation

Based on the definition of the ambiguity set U in (5), the worst-
case expectation in objective of the operational problem in (8a)
can be explicitly represented as:

max
P∈U

EP (Θ
opr(χopr, ũ)) = max

∫
V
Θopr(χopr, ũ) dP (ũ) (9a)

s.t
∫
V
ũ dP (ũ) = uN (dual η) (9b)∫

V
dP (ũ) = 1 (dual β) (9c)

dP (ũ) ≥ 0, ∀ũ ∈ V (9d)

where the decision variable P (ũ) is the probability distribution
function; while η and β are vectors of dual variables associated
with constraints (9b) and (9c), respectively. Using the duality
theory [20], (9) can be recast into (10) as indicated below:

max
P∈U

EP (Θ
opr) = min

(
β + η′uN

)
(10a)



s.t. β + η′ũ ≥ Θopr(χopr, ũ), ∀ũ ∈ V (10b)

The model can now be represented as:

min
(
Θinv + β + η′uN

)
(11a)

s.t. β + η′ũ ≥ Θopr(χopr, ũ) ∀ũ ∈ V (11b)

Aχinv +Bh(χopr, ũ) ≥ q +Qũ ∀ũ ∈ V (11c)

Note that the model in (11b) contains a bilinear term η′ũ re-
sulting in a non-convex formulation that is NP hard. Additionally,
(11) is intractable due to its infinite-dimensional nature, i.e., it
should be feasible for any realisation of the uncertain parameters
whose coverage is defined by the ambiguity set in (5). In this
work we utilise decision rules and duality theory to recast the
problem to its robust counterpart.

III. SOLUTION APPROACH

In this section, we present a three-step procedure to derive a
tractable robust counterpart for the proposed problem that can be
easily solved by off-the-shelf solvers.

A. Defining the Decision Rules

LDRs restrict the recourse decisions to affine functions of the
uncertain parameters [21]. It is noteworthy to mention that by
its nature, the decision-making process involves multiple stages,
i.e., the decisions made at each time step are dependant on
the decisions made at the previous time steps. Disregarding this
dependency in the decision rule at each time step could violate the
nonanticipativity constraints present in the model. In this work,
these constraints relate to the inter-temporal constraints on the
ramping limits of the generators (7i) and battery state-of-charge
at the end of planning horizon (7n)-(7o).

In the first step, we formulate a nonanticipative LDR for
the independent variables, i.e., hourly active/reactive power in-
jection/absorption of different types of units. The voltage lev-
els, currents, and power flows are dependant on the power
injection/absorption, hence, do not require explicit LDRs. The
active/reactive power policies for each unit n ∈ S ∪ R ∪ B are
thus defined as:

pnto = pNnto +

t∑
k=1

(∑
d∈D

(
p̂AD
ndkto · p̂dko − p̌AD

ndkto · p̌dko
)

+
∑
r∈R

(
−p̂AR

nrkto · p̂rko + p̌AR
nrkto · p̌rko

)) (12a)

qnto = qNnto+
t∑

k=1

(∑
d∈D

(
q̂AD
ndkto · p̂dko − q̌AD

ndkto · p̌dko
)
· tan θdko

+
∑
r∈R

(
− q̂AD

nrkto · p̂rko + q̌AD
nrkto · p̌rko

)
· tanϕ

) (12b)

Superscripts “D” and “R” relate to variables associated with
demand-related and renewable-related uncertainty, respectively.
The rule definitions in (12) expressing the effect of the uncertain
parameters can be compactly represented as:

h(χopr, ũ) = χopr,N + χopr,A∆ũ (13)

where χopr,N/χopr,A denotes the vector/matrix of
non-adjustable/adjustable variables. Also, ∆ũ =
(∆ũ1′, ..., ũt′, ...,∆ũT ′) represents the vector of uncertain
parameters for all hours of the planning horizon where the vector
ũt includes all uncertain parameters from hour 1 to t.

The adjustable variables perform as proxies in finding the worst
expected costs. In practice a non-zero value for an adjustable
variable represents a variation from the forecast value, and
consequently, an additional cost in the objective function.

B. Problem Reformulation using LDRs

In the second step, the problem is reformulated by the LDRs.
The rule defined in (13) is then applied to the model as follows:

min
(
Θinv + β + η′uN

)
(14a)

s.t. β ≥ Cχopr,N +Cχopr,A∆ũ− η′ũ, ∀ũ ∈ V (14b)

Aχinv +Bχopr,N − q
≥ Qũ−Bχopr,A∆ũ, ∀ũ ∈ V

(14c)

where Θopr(χopr, ũ) is reformulated as Θopr(χopr, ũ) =
Cχopr,N+Cχopr,A∆ũ. However, the optimisation problem (14)
is still intractable due to the universal quantifier over the vector
uncertain parameters (i.e., ∀ũ ∈ V). To obtain a robust solution
against any realisation of uncertain parameters, a worst-case
reformulation is introduced in this paper using the protection
functions Φ1(ũ) and Φ2(ũ) as given below:

min
(
Θinv + β + η′uN

)
(15a)

s.t. β −Cχopr,N ≥ max
ũ∈V

(
Cχopr,A∆ũ− η′ũ

)
︸ ︷︷ ︸

Φ1(ũ)

(15b)

Aχinv +Bχopr,N − q
≥ max

ũ∈V

(
Qũ−Bχopr,A∆ũ)︸ ︷︷ ︸

Φ2(ũ)

(15c)

The protection functions Φ1(ũ) and Φ2(ũ) for constraints (15b)
and (15c) depend on the polyhedral uncertainty set V defined in
(6), they can be rewritten as:

Φ1(ũ) = max
ũ∈V

((
Cχopr,Aû− η′û

)
−
(
Cχopr,Aǔ− η′ǔ

)
− η′uN

) (16a)

Φ2(ũ) = max
ũ∈V

((
Qû−Bχopr,Aû

)
−
(
Qǔ−Bχopr,Aǔ

)
+QuN

) (16b)

s.t. 0 ≤ û ≤ û (dual λ) (16c)

0 ≤ ǔ ≤ ǔ (dual π) (16d)

û/û+ ǔ/ǔ = Γ (dual ψ) (16e)

where λ, π and ψ are vectors of the dual variables associated
with constraints (16c)-(16e).

C. Applying Duality Theory

Finally, in the third step, we use duality theory to obtain a
tractable reformulation of the problem. The maximisation prob-
lem in (16a) can be recast into a minimisation problem using the
duality theory as follows:

Φ1(ũ) = min

((
û
′
λ1 + ǔ

′
π1 + Γ′ψ1

)
− η′uN

)
(17a)

s.t. λ1 +
(
1/û

)′
ψ1 ≥

(
(χopr,A)′C′ − η

)
(17b)



π1 +
(
1/ǔ

)′
ψ1 ≥ −

(
(χopr,A)′C′ − η

)
(17c)

Similarly, the maximisation problem in (16b) can be recast into
a minimisation problem as follows:

Φ2(ũ) = min

((
û
′
λ2 + ǔ

′
π2 + Γ′ψ2

)
+QuN

)
(18a)

s.t. λ2 +
(
1/û

)′
ψ2 ≥

(
Q−Bχopr,A

)′
(18b)

π2 +
(
1/ǔ

)′
ψ2 ≥ −

(
Q−Bχopr,A

)′
(18c)

Superscripts “1” and “2” are utilised to distinguish between
the dual variables in (17) and (18), respectively. Therefore, the
overall problem is reformulated as:

min
(
Θinv + β + η′uN

)
(19a)

s.t. β −Cχopr,N

≥
(
û
′
λ1 + ǔ

′
π1 + Γ′ψ1

)
− η′uN

(19b)

Aχinv +Bχopr,N − q

≥
(
û
′
λ2 + ǔ

′
π2 + Γ′ψ2

)
+QuN

(19c)

λ1 +
(
1/û

)′
ψ1 ≥

(
(χopr,A)′C′ − η

)
(19d)

π1 +
(
1/ǔ

)′
ψ1 ≥ −

(
(χopr,A)′C′ − η

)
(19e)

λ2 +
(
1/û

)′
ψ2 ≥

(
Q−Bχopr,A

)′
(19f)

π2 +
(
1/ǔ

)′
ψ2 ≥ −

(
Q−Bχopr,A

)′
(19g)

λ1 ≥ 0, π1 ≥ 0, λ2 ≥ 0, π2 ≥ 0 (19h)

The problem formulation in (19) is a single-level MILP problem
that can tractably be solved by various available off-shelf solvers.

IV. CASE STUDIES

A. Test System Setup

The data-driven DRO-based planning model described above is
tested on a modified European CIGRE low-voltage network [22]
sketched in Fig. 1. It is assumed that the network is operated in
islanded mode with no connection to the grid. One diesel unit
(SG) is already installed at node 1. The investment candidates
include three Photo-Voltaic (PV) units PV1 and PV2 and PV3;
three Energy Storage (ES) units denoted ES1 and ES2 and ES3;
three SG units SG1 and SG2 and SG3, with the capacity of each
set at 0.55 MW. Candidate units with subscripts “1”, “2” and “3”
are located at nodes 11, 17 and 18, respectively. The investment
and operational costs are shown in Table. I. For the annualised
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Fig. 1. Modified European CIGRE low voltage network.

TABLE I
INVESTMENT COSTS OF DIFFERENT TECHNOLOGIES

Technology Battery (ES) Solar (PV) Diesel (SG)
Investment Cost [M£/MW] 0.98 0.84 0.54

Annualized Investment Cost [£/MW] 96040 56280 36180
Operation Cost [£/MWh] - 0 150

TABLE II
VARIATION OF INVESTMENT COSTS, DECISIONS, AND OPERATING COSTS

WITH THE BUDGET OF UNCERTAINTY

Investment Decisions
Budget

[Γ]
Investment
Cost [M£]

Operation
Cost [M£]

PV ES SG
Comp.

Time [s]
0 0.0310 0.1283 PV3 - - 108
1 0.0929 0.1607 PV1, PV2, PV3 - - 222
2 0.0929 0.3361 PV1, PV2, PV3 - - 342
3 0.0929 0.4986 PV1, PV2, PV3 - - 452
4 0.0929 0.5404 PV1, PV2, PV3 - - 571
5 0.1102 0.5715 PV1, PV2, PV3 - SG3 683
6 0.1102 0.5848 PV1, PV2, PV3 - SG3 804
7 0.1102 0.5848 PV1, PV2, PV3 - SG3 919
8 0.1102 0.5848 PV1, PV2, PV3 - SG3 1040

costs, an interest rate of 0.053 is assumed, and the life time of ES,
PV, and wind units is set at 15, 30, and 30 years, respectively. The
load and renewable generation profiles have been obtained from
[23] using the UK values in 2019. A 24-hour planning horizon
is considered for each representative day. The computation was
performed in Python using Pyomo [24] to model the optimisation
problem and Gurobi [25] employed as a solver.

B. Optimal Solution Versus Budget of Uncertainty

The robustness and thus conservatism of the model can be var-
ied by the budget of uncertainty. A higher budget of uncertainty
corresponds to the widening of the uncertainty spectrum captured
in the model parameters. In the study network, a maximum
value of nine includes the forecast errors of both the loads
(six) and renewable generations (three) available. In Table II,
the effect of an increase in the budget of uncertainty to the
investment decisions and operating costs is presented considering
two representative days. It should be noted that the case of zero
budget of uncertainty is similar to the stochastic solution of the
problem. Both the total investment and operational costs are seen
to increase with the former reaching a plateau at a value of four
while the latter becomes constant at a value of six. At zero, a
total cost of 0.1503 M£ is recorded compared to a value of 0.695
M£ at the maximum budget of uncertainty. While the maximum
value of the budget of uncertainty captures all potential forecast
errors within the ambiguity set, it can be rather conservative.

C. Optimal Solution Versus Number of Representative Days

By increasing the number of representative days in the am-
biguity set of a DRO problem, the distributional nature of the
uncertainty is better captured. In Fig. 2, the result of variation of
the number of representative days is presented for both the pro-
posed DRO model and the SO model. The budget of uncertainty
for the DRO model is set to four in this case study. The total costs
in the proposed DRO model are shown to reduce with an increase
in the number of representative days with total costs recorded at
0.5139 M£ at four representative days compared to 0.3924 M£
at ten representative days. While the investment costs increase
with more representative days, the operational costs indicate a
decline. Table III presents the investment decisions taken under
DRO and SO uncertainty handling. With more representative
days, the available usable power from the renewable sources
is better represented and thus more usable. Additionally, the
variations in forecasted load profiles are better represented with
the increased operational scenarios i.e., representative days. The
load variations require flexibility in available generation. This
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Fig. 2. Total costs under different number of representative days for DRO and
SO models.

TABLE III
INVESTMENT DECISIONS UNDER DRO AND SO MODELS FOR INCREASING

REPRESENTATIVE DAYS.

DRO SO
Rep. Days Decision Comp. Time [s] Decision Comp. Time [s]

4 PV1, PV2, PV3 109 PV1 44
6 PV1, PV2, PV3 333 PV1 118
8 PV1, PV2, PV3 682 PV1 217

10 PV1, PV2, PV3, SG3 1175 PV1, PV2 476

flexibility requirement is fulfilled by the installation of the SG
unit in the case of ten representative days preventing any load
curtailment. The overall result indicates a lower cost and less
conservative optimal solution with more representative days. On
the other hand, both investment and operational costs in the case
of SO are shown to increase with an increase in the representative
days. Nonetheless, the total costs in the case of DRO are higher
than those with SO as the latter provides a more optimistic
solution while the former presents a more robust solution.

D. Computational Performance

In Table II, it is indicated that an increase in the budget of
uncertainty results in the exponential increment of simulation time
of the DRO problem. A similar result is obtained in Table III
with more representative days considered in the analysis. Both
increments are due to the widening of the uncertainty spectrum
captured in the model parameters, i.e., the applied budget of
uncertainty, and in the available data, i.e., the representative
operation scenarios. However, as compared to the SO model (see
Table III), the computational time in the case of the DRO is much
greater. A compromise between the data captured and the model
parameters must be made to minimise the computational effort.

V. CONCLUSION

In this paper, we have presented a DRO-based MILP planning
model for the design of islanded MGs. A moment-based ambi-
guity is utilised to represent the inherent uncertainty in load and
renewable power generation. We propose a three-step approach to
reformulate the model into a tractable optimisation problem using
LDRs and duality theory. The model is applied to a low-voltage
CIGRE network and planning decisions are analysed against the
budget of uncertainty, available distributional information mod-
elled by various representative days and additionally compared
to the SO model. Future investigations will consider the use of
a decomposition solution approach and the variation in type of
distributional support provided in the ambiguity set and its impact
on the level of conservativeness of the optimal solution.
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