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Abstract

While moving towards a low-carbon, sustainable electricity system, distribution networks
are expected to host a large share of distributed generators, such as photovoltaic units and
wind turbines. These inverter-based resources are intermittent, but also controllable, and
are expected to amplify the role of distribution networks together with other distributed
energy resources, such as storage systems and controllable loads. The available control
methods for these resources are typically categorized based on the available communication
network into centralized, distributed, and decentralized or local. Standard local schemes are
typically inefficient, whereas centralized approaches show implementation and cost concerns.
This paper focuses on optimized decentralized control of distributed generators via super-
vised and reinforcement learning. We present existing state-of-the-art decentralized control
schemes based on supervised learning, propose a new reinforcement learning scheme based
on deep deterministic policy gradient, and compare the behavior of both decentralized and
centralized methods in terms of computational effort, scalability, privacy awareness, ability
to consider constraints, and overall optimality. We evaluate the performance of the exam-
ined schemes on a benchmark European low voltage test system. The results show that both
supervised learning and reinforcement learning schemes effectively mitigate the operational
issues faced by the distribution network.

Nomenclature

A Action space of the environment in the Reinforcement Learning (RL) model.
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α′ Action of the RL method that maximizes the expected return in the next state
s′.

αt Action of the RL method at time step (iteration) t.

α1,j,t Active power action of DER at node j and time t.

α2,j,t Reactive power action of DER at node j and time t.

βj, k Regression coefficients for the jth DER unit and kth feature of the supervised
learning method.

ϕj, k The kth input measurement for the jth inverter-based DER.

Φj Feature matrix of the supervised learning method for the jth inverter-based DER.

u Vector of control variables in the centralized method.

∆t Length of each time period in the centralized method.

ηµ Learning rate for the actor network in the RL model.

ηQ̃ Learning rate for the critic network in the RL model.

γ Discount factor of the RL method.

E(·) Expectation operator used in the RL method.

x State vector representing bus voltage magnitudes and angles, except for the slack
bus where the angle is set to 0 degrees and the magnitude is fixed.

y Constant parameter vector comprising the network topology, physical character-
istics of the grid, and the thermal and voltage constraint limits.

J The set of inverter-based DERs in the distribution network.

T , τ The set and number of time steps used in the optimization problems.

P Transition function of the environment in the RL method.

µ Actor network that maps the observed state into an action in the RL method.

µ′ Target actor network: a time-delayed copy of the actor network.

ϕj,1,t Net active power demand at node j and time t of the supervised learning method.

ϕj,2,t Local measured voltage at node j and time t of the supervised learning method.

ϕj,3,t Maximum active power capability of the inverter at node j and time t.
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ϕj,4,t Feature combination of ϕj,1,t and ϕj,2,t at node j and time t of the supervised
learning method.

π Control policy of the RL method.

θµ
′

Parameters of the target actor network of the RL method.

θµ Parameters of the actor network of the RL method.

θQ̃
′

Parameters of the target critic network of the RL method.

θQ̃ Parameters of the critic network of the RL method.

θkm,t Voltage angle difference between buses k and m at time t.

θslack Fixed reference slack bus voltage angle.

p̃j, t Active power injection at node j and time t according to the supervised learning
method.

Q̃ Critic network that uses the state-action pair to calculate the action value (Q-
value).

Q̃∗(·) Optimal action value function (Bellman equation) of the RL method.

Q̃π(·) Action value function (Q-function of the RL method) following policy π.

Q̃′ Target critic network: a time-delayed copy of the critic network.

Ṽ π(·) Value function of the RL method.

c(·) General objective function representation of the centralized method.

c1 Cost parameter of the RL method to penalize the local voltage constraint.

c2 Cost parameter of the RL method to penalize the case where the apparent inverter
power is violated.

CP Cost parameter to penalize curtailing active power.

CQ Cost parameter to penalize reactive power control.

cos(ϕmax) Power factor corresponding to the acceptable inverter operational mode.

f(·) Power flow equations enforcing active and reactive power balances at each node.

gDER(·) DER technical inequality constraints and regulatory limitations in the centralized
method.

hI(·) Current (thermal) constraints referring to acceptable current magnitudes.
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hV (·) Voltage constraints referring to acceptable voltage magnitudes.

hDER(·) DER technical equality constraints of the centralized method.

Ibr,i,t Current flowing at branch i and time t.

Ii,max Maximum thermal limit at branch i.

Nb Total number of network nodes in the system.

NK The number of features in the supervised learning method.

Nk Random noise following the Ornstein-Uhlenbeck process in the RL method.

Nhor Time horizon of the optimization problem in the centralized method.

NOPF The number of optimal setpoints obtained in the centralized method.

Pcurt,j,t Curtailed power of the unit connected at node j and time t.

Pmin
g,j,t Lower limit for active power injection at node j at time t.

Pg,j,t Active power injection of the unit connected at node j and time t.

Pmax
g,j,t Maximum available active power of the unit connected at node j and time t.

Pinj,j,t Total power injection at node j and time step t.

Pl,j,t Active power load at node j and time step t.

Qctrl,j,t Reactive power output of unit connected at node j and time t.

Qmax
g,j,t Upper limit for reactive power of unit connected at node j and time t.

Qmin
g,j,t Lower limit for reactive power of unit connected at node j and time t.

Qg,j,t Reactive power injection/absorption of unit at node j and time t.

Qinj,j,t Total reactive power injection/absorption at node j and time t.

Ql,j,t Reactive power load at node j and time step t.

R(·) Reward function of the RL method.

r(s, α) Immediate reward of the RL method received for taking action α in state s

S State space representation of the environment in the RL method. Current state
denoted as s and next state as s′.

st State of the RL method at time step t.
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Smax
inv,j Capacity of the unit’s inverter located at node j.

Smax
g,j,t Maximum apparent power capability of unit at node j and time t.

t Time index.

Vmin/Vmax Minimum/Maximum acceptable voltage magnitude in the distribution grid.

Vj,t Voltage magnitude at bus j at time t.

Vslack Fixed reference bus voltage magnitude.

Ykm Nodal admittance matrix of the distribution grid.

Acronyms

AI Artificial Intelligence

BESS Battery Energy Storage System

BaU Bussiness as Usual

DDPG Deep Deterministic Policy Gradient

DER Distributed Energy Resource

DG Distributed Generator

DN Distribution Network

LV Low Voltage

MAE Mean Absolute Error

MSE Mean Squared Error

ML Machine Learning

NN Neural Network

OPF Optimal Power Flow

RL Reinforcement Learning

RMSE Root Mean Squared Error

PV Photovoltaic
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1. Introduction

1.1. Motivation & Background

Over the last years, Distribution Networks (DNs) have become more and more observ-
able and controllable, due to the widespread installation of smart metering devices with
control capabilities, and the deployment of numerous flexible Distributed Energy Resources
(DERs) [1]. The high number of Distributed Generators (DGs), such as photovoltaic (PV)
units or wind turbines, along with other DERs, such as electric vehicles, Battery Energy
Storage Systems (BESSs), and flexible loads, are elevating the role of DN operators, but
are also imposing substantial challenges to the DN operation [2]. Modern grids needs to
operate safely under higher complexity, as they are not just sinks of power anymore, and
increased uncertainty due to the intermittent nature of renewable-based DGs that cannot
be predicted perfectly and are volatile. Therefore, controlling these resources is of crucial
importance to guarantee safe and stable grid operation.

In terms of controlling approaches, the recent advances in computer science and computa-
tional power have fostered research on machine learning (ML) and artificial intelligence (AI).
These fields offer a large variety of suitable methods for power systems algorithms that can
make use of historical data and real-time measurements to learn parameters and design so-
phisticated control functions. Traditional fit-and-forget control approaches of (mostly) over-
dimensioned grids can now be substituted by more sophisticated mathematical approaches
based on ML which, with the additional support of the communication links, integrate DERs
safely into the existing infrastructure and optimize the operation of the grid. Operational
schemes are categorized as centralized, distributed, and decentralized (or local) based on
the communication infrastructure available to govern the DERs. In the rest of this section,
we summarize the available methods and provide a literature review on the various control
approaches. Since most of our previous work focused on centralized OPF-based control and
supervised learning methods to control DERs in distribution networks, e.g., [3–6], we only
provide a summary of these methods. Then, we focus on the contributions of this paper
performing a detailed state-of-the-art literature review on the RL-based methods for voltage
control. Finally, we distinguish our work against the revised literature and summarize our
contributions.

1.2. Related Works

1.2.1. Centralized OPF-based methods

Centralized methods need an extensive monitoring and communication infrastructure,
and they often rely on sophisticated optimization-based control approaches. Their benefit
stems from the fact that they allow for system-wide optimal functioning through coordi-
nated control of DERs [7]. Because of recent advances in computational power, wireless
communication, and new theoretical discoveries in handling the nonlinear AC power flow
equations, [8, 9], centralized control has gained a lot of attention. Nevertheless, the in-
frastructure necessary for this form of control is rarely present in DNs, and the financial
advantage of investing in such capabilities remains debatable.
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1.2.2. Conventional decentralized and distributed methods

Decentralized control techniques, e.g., [10], use local measurements to address power
quality and security issues. These sorts of controls have been integrated into a number of
grid codes, and they are presently the most commonly used approach in DNs. The sim-
plicity and low implementation costs of these systems are their key advantages. Because
no communication infrastructure is required, the required investment is kept to a minimum.
Decentralized approaches, however, normally take a one-size-fits-all approach, with the same
control settings used in all DNs, regardless of generator type or operating conditions. In a
fast-changing environment, such an approach might lead to unanticipated challenges, such as
stability issues [3, 4]. Finally, distributed techniques, e.g., [11, 12], rely on minimal commu-
nication among DERs to coordinate and produce near-optimal results. For a detailed survey
of the latest literature on distributed algorithms on the areas of optimization and control
of power systems we refer the interested reader to [12] where distributed algorithms for
optimal power flow (OPF) problems are compared. While distributed approaches attempt
to bridge the gap between local and centralized systems, they still need some communica-
tion infrastructure and often use consensus-based control algorithms that are susceptible to
communication delays and errors.

1.2.3. Decentralized methods based on supervised learning

Lately, data-driven methods based on machine learning have attracted a lot of atten-
tion in the power systems area. In terms of supervised learning, most works use regression
methods to represent the optimal behavior obtained by offline optimal power flow calcu-
lations [3, 5, 6, 13–16]. In [3, 5], we perform three-phase optimal power flow calculations
based on historical data to design local controls based on segmented regression and support
vector machines that emulate the optimal behavior without the use of any communication.
The proposed approach in [13, 16] uses non-linear control policies to calculate the real-time
reactive power injections of inverter-based DGs. It uses linearized grid modeling, assumes
balanced operation, and focuses on reactive power control, exploiting the flexibility of vari-
ous kernel functions to model complex and non-linear behaviors. In [14] and [15], multiple
linear regression models are used in an open-loop fashion to calculate a function for each
inverter that maps its local historical data to pre-calculated optimal reactive power injec-
tions. These works focus on reactive power control, not considering possible combinations
with other available controls, and [15] assumes a balanced DN, i.e. using a single-phase
representation. However, these approaches work well with legacy equipment and do not
require a stability analysis like [5] which is addressed in [4]. The interested reader is referred
to [17] for a review on learning to control power systems, with an emphasis on guidelines
for concrete safety problems.

1.2.4. Decentralized methods based on reinforcement learning

Finally, in terms of (deep) Reinforcement Learning (RL), we restrict ourselves to works
related to power systems that are in normal operating state, i.e., the control policies are
learned and applied under normal operating conditions. Such works are related to frequency
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regulation, e.g., [18–20], demand response, e.g., [21, 22], and the main application of this
paper, voltage control, e.g., [23–31].

In [23], a two-timescale approach is used to regulate voltages in distribution systems:
on the faster timescale, a voltage tracking problem decides on the DER setpoints, while
deep RL is used on the slower timescale to control capacitor banks for long-term voltage
stability. The control is based on switching on/off the capacitors to regulate voltage. In [24],
voltage control is achieved by deciding on the generator voltage setpoints. Deep Q-network
and Deep Deterministic Policy Gradient (DDPG) are used to perform voltage control, the
latter of which showing better long-term performance due to a larger range of exploration.
A similar RL algorithm is proposed in [26] where the authors reduce the system’s losses by
controlling the reactive power of smart transformers. However, a data-driven network model
is used to create the training data for the RL algorithm without interactions with the actual
distribution grid.

Reference [27] proposes a voltage sensitivity based DDPG method to compute analyt-
ically the gradient of the value function instead of using the critic neural network. The
control relies also on reactive power only, but considers a multi-agent approach. In [29],
the authors propose a two timescale hybrid voltage control strategy based on mixed-integer
optimization and multi-agent reinforcement learning. The focus of the fast timescale is to
mitigate short-term voltage fluctuations by reactive power control of smart PV inverters
and active power of electric vehicles. Reference [28] is based also on two different DERs for
control; it uses reactive power from PV and active power from a BESS to mitigate voltage
issues. Another RL-based method that controls the tap position of voltage regulating trans-
formers and capacitor banks is presented in [30], whereas the authors of [31] utilize active
power curtailment of PV units and reactive power control of static var compensators. In
both references, a single-agent approach is used in a centralized manner, i.e., the RL agent
requires full knowledge of the environment.

Many of the revised papers, i.e., [23, 24, 26] apply an RL algorith to one control measure
to regulate voltages. The references that consider multiple measures, i.e., [28–31], rely on
separate DERs for each offered control measure. In our paper, we focus on decentralized
control of a single agent to optimally regulate voltage, without need for communication
network. In contrast to the revised literature, we use both active power curtailment and
reactive power control from the same inverter-based DG. We perform a steady-state analysis
and we consider the inverter’s capability curve to decide on the reactive and active power
control setpoints.

Finally, we refer the interested reader to two review papers; an extensive review in [32],
summarizing the use of RL in power system control with respect to normal, emergency, and
restorative control applications; and Ref. [33] providing a comprehensive review on recent
RL-based methods to control voltages in power systems, where the different methods are
compared in terms of the used environment, state space and action space representation,
reward function, constraints, and challenges.
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1.3. Contributions

In this paper, we compare state-of-the-art decentralized control approaches in active
distribution grids using AI-based methods. We consider reactive power control and active
power curtailment from the same inverter-based DG and the decentralized schemes are
derived by supervised learning and deep RL methods. More specifically, the contributions
of this paper can be summarized as follows:

• The proposal of a deep reinforcement learning algorithm for voltage control in active
distribution grids based on deep deterministic policy gradient. The single agent rep-
resents any inverter-based distributed energy resource and controls both active and
reactive power using the inverter’s capability curve.

• A quantitative comparison of the state-of-the-art approaches to control distributed
energy resources in active distribution grids, i.e., based on purely local control laws,
optimal power flows, supervised learning and reinforcement learning, using error met-
rics.

• A qualitative evaluation of the different options/methods to control DERs, includ-
ing optimality, constraint consideration, needed training effort, safety, capability to
adapt to changes, privacy and scalability that can assist decisions of operators and
researchers.

The remainder of the paper is organized as follows: In Section 2, we present the math-
ematical formulation of the decentralized DER controllers using a) the supervised learning
algorithms based on offline optimal DER setpoints, and b) RL-based schemes. Then, in
Section 3, we introduce the case study and simulation results that show the performance of
the optimized controllers according to the different methods. Finally, we draw conclusions
in Section 4.

2. Supervised Learning and RL-based methods

2.1. Supervised Learning based on off-line data

Supervised learning requires the offline computation of many optimal DER setpoints that
represent different operating conditions. These can be obtained via OPF calculations, under
specific objectives, such as system losses minimization or reference voltage tracking. Since
the focus of this paper does not lie on OPF formulations, a generic high-level description
is provided here. For a full three-phase OPF formulation in distribution grids, we refer the
interested reader to [34]. System safety and power quality considerations can be incorporated
by including appropriate constraints in the optimization problem.

Offline OPF. An optimal power flow problem calculates the most efficient settings of the
power system control variables to minimize the total cost of generating and transmitting
electricity while satisfying the operational constraints. As inputs it uses the system’s topol-
ogy, its parameters, load demand and the generators’ and lines’ operational constraints that
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need to be satisfied. The outputs of an OPF problem are the controllable units’ setpoints
and the objective function value that is optimized. We refer the interested reader to [35]
for a detailed analysis of the power flow equations and their use in an optimization setup.
Formally, the OPF problem is represented as

min
u

c(x,u) (1a)

s.t. f(x,u,y) = 0, (1b)

hV (x,u,y) ≤ 0, (1c)

hI(x,u,y) ≤ 0, (1d)

hDER(x,u,y) ≤ 0, (1e)

gDER(x,u,y) = 0. (1f)

The control vector u represents the controllable entities, e.g. the DER active and reactive
power setpoints; the state vector x refers to the bus voltage magnitudes and angles (except
for the slack bus, where the angle is set to 0 degrees and the magnitude is fixed); the constant
parameter vector y comprises the network topology, physical characteristics of the grid, and
the thermal and voltage constraint limits; finally, the function c(x,u) represents the various
objectives, including the operational cost of the used measures, electricity cost/revenue by
exchanging energy with the upper voltage networks, revenues from ancillary service provi-
sion, etc. The power flow equations are represented by equation (1b) which enforces active
and reactive power balances at each node. Constraints (1c) - (1d) correspond to power qual-
ity constraints, referring to acceptable voltage and current magnitudes. Finally, the DER
models and constraints are incorporated via (1e) - (1f) which model the DER technical and
regulatory limitations, such as curtailing PV power, setting limits for the battery state of
charge, updating the BESS energy capacity at each time, etc. The simulation outcomes of
many operational conditions are provided to the data-driven design stage, where the ob-
tained optimal data are used to design local DER controls for real-time DN operation based
on ML techniques.

Data-driven Control Design. Figure 1 summarizes the procedure to generate the optimized
local DER control models used in the real-time decision making. As input data, each DER
considers only local information, e.g., local solar radiation, active and reactive demand,
voltage magnitude, maximum active and reactive power capability of the inverter, the local
time, and interaction terms among these. The scope of the supervised ML approach is to
create a model that given these local inputs, will respond similarly to the OPF behaviour it
is trained from.

In order to design robust ML-based control schemes, the training dataset should consider
both expected as well as unexpected operational conditions. It should consider the seasonal
variation of load and generation, the various valid network configurations and intermittent
renewable-based energy resources. For instance, when exploring the summer season, one
needs to consider both sunny and cloudy days in the training dataset, typical consumption
patterns, and all possible DN topologies. It is important to note that all the considered
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Figure 1: Data-driven control design based on supervised learning.

conditions do not need to be present in the historic realized behavior. Instead, they can be
artificial, i.e., simulated, to be used as inputs in the design of the ML-based schemes and
lead to robust and safe data-driven behavior.

There are various regression and classification ML algorithms, such as segmented and
multiple regression, support vector machines, and decision trees, that can be used according
to the required complexity and accuracy in terms of mimicking the offline OPF response.
The interested reader is referred to [5] for a detailed discussion of such models. Although the
mathematical models differ from each other, they all try to map the observed OPF behaviour
as close as possible using local features. The real-time response of the jth inverter-based DER
(j ∈ J ) in terms of active power control pj,t is derived from the NOPF optimal setpoints (t ∈
T ) obtained in the offline calculations, and the final rules depend only on local features. The
feature matrix Φj ∈ RNOPF ×NK contains as columns the NK features and as rows the NOPF

observations of the kth input measurement ϕj,k ∈ RNK , i.e. Φj = [ϕj,1,ϕj,2, . . . ,ϕj,NK
]T .

2.2. Deep RL-based methods

In this section, we explain the main principles of deep RL, and we present in detail the
mathematical model of the specific algorithm applied in this paper.

2.2.1. Basics of (deep) RL methods

Reinforcement learning differs from supervised learning in the sense that the focus is not
on labelled input and output data, but rather on trying out different control actions and
evaluating them according to a reward system. Thus, a balance is sought between explo-
ration of uncharted territory and exploitation of gained knowledge based on the observed
states and rewards. The agents interact with the environment, which is typically mod-
elled as a (partially observable) Markov decision process following the principles of dynamic
programming.

The environment of our RL model is defined by: a (continuous or discrete) state space S;
a (continuous or discrete) action space A; an environment transition function P : S×A→ S;
a reward function R : S × A → R; and a discount factor γ ∈ [0, 1]. The main principle is
summarized as follows; At each time step t, the agent (e.g., a DER unit) observes the state
st ∈ S, performs an action αt ∈ A following a control policy π (e.g., PV curtailment, BESS
charging or discharging, injecting/absorbing reactive power) that alters the environment,
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and receives the corresponding reward signals r ∈ R (e.g., revenues from injecting power,
penalties for causing voltage issues). The goal is to learn and apply the optimal action based
on the current state in order to maximize the accumulated reward over time. This is given
by R(t) =

∑T
t=0 γ

trt.
Let us define the value function Ṽ π : S → R:

Ṽ π(s) = E[
T∑
t=0

γtrt|S0 = s], ∀s ∈ S (2)

and the action value function (Q-function) Q̃π : S × A→ R:

Q̃π(s, α) = E[
T∑
t=0

γtrt|S0 = s, A0 = α], ∀s ∈ S,∀α ∈ A (3)

which models the expected discounted return when the agent takes the action α in state s
and then follows the policy π.

The Q-function is updated by the Bellman equation, i.e., an iterative algorithm given by

Q̃∗(s, α) = E[r(s, α) + γmax
a′∈A

Q̃∗(s′, α′)]. (4)

where α′ refers to the action that maximizes the expected return in the next state s′. This
algorithm will converge to the optimal solution Q̃∗(s, α) as t → ∞ as long as the state
signals fulfil the Markov property.

The traditional Q-learning requires discretization of the observation space, since it relies
on tabular methods. This introduces computational concerns when the dimensions are
large, leading to memory issues and prolonged training stages. Furthermore, it is sometimes
difficult to discretize realistic environments which include continuous variables. For these
reasons, deep RL models have gained a lot of attention lately, due to their efficiency in
approximating the policies and Q-functions. They leverage the historic agent-environment
interactions to extract the optimal policies, which may be based on simulated or real events.
Typically, deep RL models use Neural Networks (NN) to estimate Q-values. Their efficiency
and stability are increased by using a targeted Q-network apart from the current Q-network,
and by using experience replay where samples of the agent’s experience in terms of actions
and rewards, i.e., mini-batches, are stored and used to train the Q-network.

The available deep RL models can be categorized into model-free and model-based al-
gorithms. The former are easier to tune and implement, but their efficiency depends on
the samples. The latter are constructed using a physical/mathematical model but are more
difficult to formulate. We explored several (deep) RL models and algorithms that can be
found in the literature, such as asynchronous advantage actor-critic, proximal policy opti-
mization, trust region policy optimization, Deep Deterministic Policy Gradient (DDPG),
and twin delayed DDPG [36]. After considering the overall performance in terms of average
reward per episode and convergence stability for our use case, we observed that the DDPG
showed the best behavior with the default hyperparameters, and thus, in the rest of the
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paper we focus on the DDPG algorithm. Comparing different RL methods is outside the
scope of this paper, since one would need to compare the mathematical models, the various
parameter sets of each method and convergence characteristics. The selected method is a
model-free, off-policy, and actor-critic deep RL algorithm that includes continuous state and
action spaces.

2.2.2. Deep deterministic policy gradient

In this section, we present the RL method, based on DDPG, to control DERs in active
distribution grids. The selected method follows an ’actor-critic’ architecture, which involves
two neural networks. The actor network is responsible for learning the optimal control policy
π that maps the state of the distribution network to the corresponding control actions of the
DERs, while the critic network estimates the Q-function (4), i.e., the expected cumulative
reward obtained from following the policy. It is ’model-free’, i.e., it does not require any
prior knowledge of the distribution network or the dynamics of the DERs, and is an ’off-
policy’ method, i.e., the agents learn from data generated by any policy, not the optimal
policy necessarily. DDPG algorithms can work with continuous control variables, such as
PV curtailment and reactive power control actions, as considered in this paper.

The procedure and the main principles of the DDPG algorithm of the networks are given
in Fig. 2. First, the actor network, denoted as µ(s|θµ) and shown as block 1 in Fig. 2 maps

the observed state into an action α, and then the critic network denoted as Q̃(s, α|θQ̃) and
shown as block 2 in Fig. 2, uses the state-action pair to calculate the action value (Q-value).

The parameters of the neural networks are represented by θµ for the actor and θQ̃ for the
critic network. To foster exploration and avoid getting stuck in local solutions, the random

Figure 2: High-level flowchart overview of the DDPG algorithm.
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noise Nk following the Ornstein-Uhlenbeck process [37] is added to the policy. In each
iteration, denoted by the index k, the tuple (sk, αk, rk, sk+1) is stored in the replay buffer B
shown as block 3 in Fig. 2.

A time-delayed copy of these two networks is also used to improve the training stability.
This is achieved by introducing the so-called target networks that are denoted by Q̃′(s, α|θQ̃′

)

and µ′(s|θµ′
), and shown as block 4 in Fig. 2; their parameters θQ̃

′
and θµ

′
track smoothly

the main networks by

θQ̃
′ ← τθQ̃ + (1− τ)θQ̃

′
, θµ

′ ← τθµ + (1− τ)θµ
′
. (5)

From the replay buffer B that serves as a data-pool, N samples are derived to train the
neural networks. More specifically, to first train the target critic network, we calculate for
each sample i the sum of the immediate reward and the expected Q-function value of the
next state, given by

yi = ri + γQ̃′(si+1, µ
′(si+1|θµ

′
)|θQ̃′

). (6)

Then, as shown in block 5 of Fig. 2, the critic network is updated by minimizing the
averaged loss function between the estimated reward calculated in (6) and the expected
reward of the derived N samples from the critic network, given by

L(θQ̃) =
1

N

N∑
i

(yi − Q̃(si, αi|θQ̃))2. (7)

Thus, the parameters of the critic network are updated by

θQ̃ ← θQ̃ − ηQ̃∇θQ̃L(θ
Q̃), (8)

where ηQ̃ is the learning rate for the critic network and ∇θQ̃L(θ
Q̃) is the gradient of the

averaged loss function (7) with respect to θQ̃.
Finally, the actor network is updated via a gradient ascent approach shown in block 6 of

Fig. 2 that maximizes the average policy performance of the used N samples, given by

∇θµJ(θ
µ) ≈ 1

N

N∑
i

∇αQ̃(s, α|θQ̃))|s=si,α=µ(si)∇θµµ(s|θµ)|si . (9)

The parameters of the actor network are updated by

θµ ← θµ + ηµ∇θµJ(θ
µ), (10)

where ηµ is the learning rate for the actor network and ∇θµJ(θ
µ) is the gradient of the

average policy performance with respect to θµ.
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The update equations (8) and (10) represent the gradient steps taken to update the
neural network parameters. A descent step is used for the critic network to minimize the loss
function, and an ascent step for the actor network to maximize the policy performance. By
moving in the negative direction of the gradient of the loss function, the critic neural network
learns to minimize the mismatch between the estimated and expected rewards. Similarly, by
taking steps in the positive direction of the gradient of the average policy performance, the
actor network learns to take better actions, improving the policy. Both learning rates, i.e.,
ηQ̃ and ηµ, influence the convergence and stability of the learning processes, by controlling
the size of the update steps. They assess the trade-off between exploration and exploitation
and the careful tuning of them affects the overall DDPG performance and avoids oscillations.

Algorithm 1 presents the procedure of training a single DER agent based on the DDPG
model. We define an episode as one day with 24 hourly steps, i.e. T = 24. In total, M
episodes are considered in the training stage, corresponding to different solar radiation and
loading data that represent different operating conditions. Hence, the power flow calculations
result in different solutions, i.e. complex voltages, that trigger different actions from the
DER-agent.

First, all the networks and memory buffer are initialized. Then, for each episode, at the
beginning of each hour, the agent senses the environment, which is represented by measuring
the local voltage and solar radiation and performs actions, such as the curtailment of active
power and reactive power control. To decide on the actions, rewards are received based
on the electricity exchange and local constraints’ satisfaction. Subsequently, a power flow
calculation is performed, the system state is updated, and the reward signals are sent to the
DER agent anew. All the simulated cases are stored in the memory buffer used to improve
the parameters of the actor and critic networks, following the last algorithm steps.

3. Case Study - Results

3.1. Network Description and Input Data

In order to compare the different decentralized control methods, we use a typical Euro-
pean radial LV grid [38], sketched in Fig. 3. The installed PV capacity is expressed as a

1 2 3 4 5 6 7 8 9 10 11

12 17 19

13

14 15 16
18

Figure 3: Benchmark European LV grid [38].
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Algorithm 1 DER-agent training based on the DDPG-model.

1: Randomly initialize actor network µ(s|θµ) and critic network Q̃(s, α|θQ̃) with parameters

θQ̃ and θµ, respectively.
2: Initialize target networks µ′(s|θµ′

) and Q̃′(s, α|θQ̃′
), with main networks’ parameters,

i.e., θµ
′ ← θµ and θQ̃

′ ← θQ̃.
3: Initialize the experience replay buffer B.
4: for episode = 1, ...,M do
5: Initialize random process Nk.
6: Initialize observation state s1.
7: for t = 1, ..., T do
8: Perform action αk = µ(s|θµ)+Nk, run power flow calculations and observe reward

rk and new state sk+1 of the system.
9: Store tuple (sk, αk, rk, sk+1) in memory buffer B.
10: Randomly sample N tuples from B.
11: Calculate (6) and update critic network by minimizing (7) (one step of gradient

descent).
12: Update the actor policy by the sampled policy gradient of (9) (one step of gradient

ascent).
13: Update the parameters of the target networks using (5).
14: end for
15: end for
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Figure 4: Scaling factors for the PV injections and the load.

percentage of the total peak load as follows: PV nodes = [12, 16, 18, 19], PV share (%)
= [25, 45, 35, 25]. This work considers balanced, single-phase system operation, but the
framework can be extended to three-phase unbalanced networks following [34].

In order to create multiple episodes, we consider different loading conditions taken
from [38], and solar radiation profiles [39] for specific areas in Switzerland covering the
time period of 2 summer months. Figure 4 shows the scaling factors for five summer days
taken from the testing dataset. We assume a perfect spatial correlation, i.e., the PV scaling
factors are the same at all nodes, which is a logical assumption for the examined neigh-
borhood. These scaling factors are used to test the behavior of the different methods, i.e.,
they are not considered in the training dataset. In terms of operational limits, we assume
a maximum (resp. minimum) acceptable voltage of 1.04 p.u (resp. 0.96 p.u.) and cable
current magnitude of 1 p.u. on the cable base.

The implementation was done in MATLAB R2021a for the supervised learning and in
Python 3.7 for the deep RL. For the OPF-based control, YALMIP R20210331 [40] was used
as the modeling layer and Gurobi 9.1.2 [41] as the solver. For the deep RL modeling, we
used OpenAI Gym 0.18 [36]. The results were obtained on an Intel Core i7-2600 CPU and
16 GB of RAM.
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3.2. Supervised learning based on off-line data

3.2.1. OPF formulation

The selected objective function of the centralized OPF minimizes the control cost for all
network nodes (Nb) for the time horizon (Nhor), and is given by

min
u

Nhor∑
t=1

{ Nb∑
j=1

(
CP ·Pcurt,j,t+CQ ·Qctrl,j,t

)}
·∆t, (11)

where u is the vector of control variables and ∆t is the length of each time period. The
curtailed power of the DGs connected at node j and time t is given by Pcurt,j,t = Pmax

g,j,t −Pg,j,t,
where Pmax

g,j,t is the maximum available active power and Pg,j,t the active power injection of
the DGs. The use of reactive power support Qctrl,j,t = |Qg,j,t| for each DG connected to
node j and time t is also minimized; Qg,j,t represents the DG reactive power injection or
absorption. The coefficients CP and CQ represent, respectively, the DG cost of curtailing
active power and providing reactive power support. The assumption that CQ ≪ CP is made,
which prioritizes the use of reactive power control over active power curtailment.

The power injections at every node j and time step t are given by

Pinj,j,t = Pg,j,t − Pl,j,t, (12a)

Qinj,j,t = Qg,j,t −Ql,j,t, (12b)

where Pl,j,t and Ql,j,t are the active and reactive node demands of constant power type. The
nodal power balance equations using the full, non-linear AC power flow are given by

Pinj,j,t = |Vk,t|
Nb∑
m=1

|Vm,t| (Gkm cos θkm,t +Bkm sin θkm,t), (13a)

Qinj,j,t = |Vk,t|
Nb∑
m=1

|Vm,t| (Gkm sin θkm,t +Bkm cos θkm,t), (13b)

where Ykm = Gkm + jBkm is the nodal admittance matrix, |Vk,t|, |Vm,t| are the voltage
magnitudes at buses k and m respectively at time t, and θkm,t = θk,t − θm,t is the voltage
angle difference between these buses at time t.

The constraint for the current magnitude for branch i at time t is given by

|Ibr,i,t| ≤ Ii,max, (14)

where Ibr,i,t is the branch current, and Ii,max is the maximum thermal limit. Similarly, the
voltage constraints for each bus j and for each time step t are given by

Vmin ≤ |Vj,t| ≤ Vmax, |Vslack| = 1, θslack = 0, (15)

where Vmax and Vmin are respectively the upper and lower acceptable voltage limits for the
magnitudes of the bus voltages |Vj,t|, and |Vslack|, θslack are the fixed reference slack bus
voltage magnitude and angle, respectively.
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Figure 5: Different operational types within the P-Q inverter capability curve.

In this work, we only consider inverter-based DGs, such as PVs. Their output power
limits are thus given by

Pmin
g,j,t ≤ Pg,j,t ≤ Pmax

g,j,t , Qmin
g,j,t ≤ Qg,j,t ≤ Qmax

g,j,t , (16)

where Pmin
g,j,t , P

max
g,j,t , Q

min
g,j,t and Qmax

g,j,t are the upper and lower limits for active and reactive
DG power at each node j and time t. These limits vary depending on the type of the DG
and the control schemes implemented.

Inverter-based DERs operate within the P-Q inverter capability curve, depicted in Fig. 5.
We assume that the inverter is over-dimensioned by 10%, e.g. Smax

inv,j = 1.1 · Pmax
g,j to allow

for reactive power control even when the DER is operating at the maximum active power.
There are different operational modes, such as a) the “triangular” mode (

`
) which imposes

an operational minimum power factor, b) the “rectangular” mode (□) which allows reactive
power control at times of low active power injections, and finally c) the semi-circle capability
mode (⃝) described by (17c) which represents the full capability region of the DER, without
any constraint on the power factor. Thus, the limits are given by

(
h

) :− tan(ϕmax)Pg,j,t ≤ Qg,j,t ≤ tan(ϕmax)Pg,j,t, (17a)

(□) :− tan(ϕmax)P
min
g,j,t ≤ Qg,j,t ≤ tan(ϕmax)P

max
g,j,t , (17b)

(⃝) : Q2
g,j,t ≤ (Smax

inv,j)
2 − P 2

g,j,t. (17c)

The optimization problem (11)-(17) can be solved using the interior point algorithm
based on the barrier method through the IPOPT solver [42] and provides the optimal set-
points that are needed in the supervised learning method.

3.2.2. Supervised Learning

As base features for the active and reactive power DER control we use the active power
demand ϕj,1,t = Pl,j,t, the local measured voltage ϕj,2,t = Vj,t, and the maximum active
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power capability of the inverter ϕj,3,t = Pmax
g,j,t . Combinations of these features can also be

considered, e.g., ϕj,4,t = ϕj,1,t · ϕj,2,t or ϕj,5,t = (ϕj,1,t)
2 if they increase the accuracy metrics.

Finally, the feature matrix is given by Φj,1 = [ϕj,1,t, ϕj,2,t, ϕj,3,t, ϕj,4,t]
T . Using the least

squares method that can be found in [43] with many other supervised learning methods, the
local model for active power control is derived by solving

min
β

∑
t∈NOPF

(Pg,j,t − p̃j,t)
2, (18a)

p̃j,t = βj,0 +
∑
k⊂K

βj,k ·Φj,1, (18b)

where βj,k are the k + 1 regression coefficients of the jth unit for the k ⊂ NK features. A
similar model for reactive power control is derived.

3.3. Deep RL

We define for the active power the action space as α1,j,t ∈ [0, 1] where zero indicates
complete active power curtailment and one indicates no curtailment. Thus, the active power
injection of the DG at the node j is given by Pg,j,t = α1,j,tP

max
g,j,t . Regarding reactive power,

the action space is defined as α2,j,t ∈ [−1, 1], and the reactive power injection is given
by Qg,j,t = α2,j,tS

max
g,j,t . We use the semicircle DER capability of (17c) which needs to be

respected by the agent. As states we consider the time t, the maximum available PV power
Pmax
g,j,t , and the local voltage magnitude Vj,t. The injected active and reactive power of the

agent at time t will thus be given by

Pinj,j,t = α1,j,tP
max
g,j,t − Pl,j,t, (19a)

Qinj,j,t = α2,j,tS
max
g,j,t −Ql,j,t. (19b)

Considering the curtailment costs, the operational constraints regarding local voltage
magnitudes and the inverter capabilities, the reward function at time t of the agent for the
DER at bus j is given by

R(t) = −
T∑
t=0

(
CP (1− α1,j,t)P

max
g,j,t + CQα2,j,tS

max
g,j,t + c1 ·max(0, Vj,t − Vmax)

+c1 ·max(0, Vmin − Vj,t) + c2 ·max(0, P 2
g,j,t +Q2

g,j,t − (Smax
inv,j)

2)
) (20)

where c1 is a parameter to penalize the local voltage constraint, and c2 is a parameter to
penalize situations that the apparent inverter power is not respected. Overall, the goal is
to avoid local constraint violations in terms of voltage by controlling reactive power and
by curtailing active power. Similar to the formulation of Section 3.2.1, by selecting the
reactive power cost coefficient lower than the corresponding for active power curtailment,
we prioritize the use of reactive power control. Thus, reactive power is expected to be
utilized first to alleviate limit violations before active power is curtailed.
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Table 1: Hyperparameters in the deep RL training stage.

Hyperparameter in DDPG Value

Mini-batch size 120
Actor learning rate 1.00E-04
Critic learning rate 1.00E-03
Gradient Threshold 1
Sample time (hour) 1
Target smooth factor 1.00E-03

Experience buffer length 1.00E-05
Noise variance 1.00E-01

Noise variance decay rate 1.00E-06
Discount factor gamma 0.99

Optimizer Adam

After the actions of the agent are defined, a power flow calculation is performed in order
to derive the voltages at all nodes and obtain the new states from the environment. In case
the agent’s action does not respect the inverter’s capability curve, the active and reactive
power are decreased proportionally to satisfy the constraint.

In this paper, we use OpenAI Gym [36] as the modeling platform to test our deep RL
model. Each episode is modeled as one day, i.e. 24 hours. Parameter tuning is a very
important step in the implementation of RL algorithms. The choice of optimal parameter
values depends on the specific mathematical problem and environment, and may require
experimentation and tuning. Typical methods to tune the parameters of RL algorithms
include grid search, random search [44], and Bayesian optimization. Grid search is a simple
method where we define a set of values for each parameter and then evaluate the per-
formance of the algorithm for all possible combinations of parameter values. In random
search [44], the performance is evaluated for each combination of parameters after randomly
sampling the parameter space. Bayesian optimization is a more sophisticated method be-
cause it constructs a probabilistic model to predict the performance of the algorithm for
each combination of parameters and then uses it to choose the next set of parameters that
evaluate [45]. Other recent methods that show promising results include genetic algorithms
and heuristics [46] showing that the optimal parameter selection is an active research ques-
tion. We refer the interested reader to [47] for a review and comparison of hyperparameter
optimization techniques.

In this paper, we have used a combination of grid search and manual tuning to select
the hyperparameters for DDPG in the context of our specific problem. We performed a
sensitivity analysis of the most important parameters to investigate the effect of them on
the stability and performance of the algorithm. More specifically, we compared the average
reward over the training period, convergence, overall stability, and robustness. The needed
hyperparameters for the implementation of the DDPG RL algorithm are listed in Table 1.
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3.4. Comparison of Methods and Discussion

To compare the different decentralized methods, we investigate the following approaches:

• Method 0 - Business as usual (BaU): This represents a current local Volt/VAr control
scheme defined in grid codes, e.g., [48], and adopts a one-solution-fits-all approach for
the design of the static control laws irrespective of the location of each DG or of the
specific grid specifications.

• Method 1 - OPF: An AC OPF solution is performed at each time step, representing
the optimal benchmarking behavior. Active power curtailment and reactive power
control using (17c) are allowed;

• Method 2 - Supervised Learning: The optimized local control schemes are derived in
the training stage following Section 2.1, and are tested using new samples regarding
solar radiation and load. An AC PF solution is performed for each time step, with the
DG agent behaving according to their supervised data-driven schemes;

• Method 3 - Deep RL: In this method, the agent behaves according to the DDPG
method described in Section 2.2. An AC PF solution is performed for each time step
after the agent’s actions have taken place.

We organize the remaining section into three parts. First, we provide detailed results for
5 summer days in order to get intuition about the outcome of each method, and understand
their strengths and limitations. Then, we provide summarized monthly results, provide error
metrics compared to the optimal method, and compare the different methods in terms of
error metrics. Finally, we provide a comparative evaluation of the examined decentralized
control methods, and we assess the trade-offs between privacy, needed computational effort,
constraint consideration, scalability, and optimality.

3.4.1. Detailed Results over 5 summer days

Figure 6 presents the voltage magnitude evolution of Node 16, over the period of 5
summer days. The scaling factors for the DG unit (PV) and the nodal demand are given
in Fig. 4. Considering the installed DG capacity and nominal load, Node 16 is mostly
injecting power to the grid (apart from the third day) which leads to high voltages. It is
obvious that the current industrial practice (Method 0) can be insufficient in cases of large
DER penetration as severe voltage limit violations still occur. This is happening because
this method does not consider the location of each DG or of the specific requirements for
both active power curtailment and reactive power control to reduce the voltages. Method 1
corresponds to the centralized solution where the optimal behavior is achieved assuming that
a bi-directional communication and control network exist. The optimal behavior indicates
that the minimum control effort is used in terms of active and reactive power control is used
to satisfy the operational voltage constraint at its acceptable limit.

On the other hand, Methods 2 and 3 mimic the optimal centralized solution (Method 1)
without communication needs, i.e., they are based on decentralized approaches. We observe
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Figure 6: Voltage magnitude evolution for all examined methods over 5 summer days.

that Method 3 results in power being utilized (“activated”) almost continuously, even when
this is not needed. For instance, in contrast to all other methods that correctly do not control
power on Day 3, Method 3 utilizes reactive power that influences the voltage trajectory. This
indicates that a larger training dataset is needed so that the RL-agent learns not to utilize
any control when it is not needed.

By design, Method 3 tries to avoid problematic instances (see reward function (20)), and
shows a more conservative behavior, i.e., more active and reactive power control is activated
to reduce the voltage back to acceptable values. However, both Methods 2 and 3 track the
OPF behavior with marginal inefficiencies in terms of more activated control (Method 2),
or short-term violations (Method 3).

As illustrated in Fig. 7, at periods of high voltages, an inductive behavior of the controller
in Method 3 reduces the local voltage. When the maximum reactive power consumption
is not enough, active power curtailment is also used during the first 2 days. Since this is
penalized more in the reward function, the algorithm prioritizes reactive over active power
control. However, the existence of some overvoltages indicate the need for more training
data for the deep RL scheme.

3.4.2. Monthly Evaluation Results at Node 16

In this section, we summarize the results from applying the four decentralized control
methods in real-time operation for the test period of one summer month. We compare first
power quality values, i.e., the system’s losses, the maximum observed voltage magnitude
at Node 16 and cable (branch 5-16) loading, as well as active power curtailment. Then,
we calculate error metrics to compare the different decentralized approaches against the
centralized one.
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Figure 7: Active (α1,j,t) and reactive (α2,j,t) control action for the RL-based control scheme.

Table 2: Summarized monthly power quality results for all examined methods.

Method 0 1 2 3

Pcurt (%) 1.510 4.340 7.235 4.785
Losses (%) 6.110 4.720 4.310 5.215
|V |max (p.u.) 1.085 1.040 1.045 1.057
|I|max (%) 125.940 100 104.570 108.130

Power quality quantities. Table 2 summarizes the monthly results in terms of power quality.
The power losses and the active power curtailment refer to the whole month, whereas the
voltage magnitude and cable flow only to the maximum value observed.

As benchmark we use the optimal case, i.e., Method 1 that satisfies the operational
constraints at the minimum cost defined by the objective function (11). Method 0 (standard
industry practice) shows higher losses than the OPF-based approach, due to less active power
curtailment, i.e., more power is injected into the network. Method 2 shows higher total active
power curtailment than the optimal case, but the worst power quality values over the whole
testing month result in marginal violations. Finally, Method 3 keeps the total curtailment
value closer to the optimal case with slightly higher violations than Method 2. Furthermore,
it shows higher losses than Method 2 for two reasons; it curtails less active power and
therefore more active power is injected, and it shows most of the time an inductive behavior
by absorbing reactive power as can be seen in Fig. 7. Both Methods 2 and 3 mimic Method
1 without communication needs.

Error Metrics. In this part, we compare the performance of the examined methods using
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common statistical error metrics to calculate how close the examined decentralized methods
follow the optimal response. Thus, the voltage values obtained by Method 1, i.e., Vm1

represent the ’true’ values, and the time-series of Methods 0 (Vm0), 2 (Vm2) and 3 (Vm3) the
’predicted’ values.

We will use the following error metrics:

• Mean Absolute Error (MAE): The MAE represents the average absolute difference
between Method 1 and the estimated values of the other methods. It is given by:
MAE = 1

n

∑n
t=1 |Vm1,t − Vm,t| where n is the number of data points (720 for the test

month), Vm1,t is the true voltage value at time t from Method 1, and Vm,t is the
estimated voltage value at time i from the other methods.

• Mean Squared Error (MSE): The MSE represents the average of the squared differences
between Method 1 and estimated values of the other methods. It is given by: MSE =
1
n

∑n
t=1(Vm1,t − Vm,t)

2.

• Root Mean Squared Error (RMSE): The RMSE is the square root of the MSE, which
is easier interpretable being expressed in p.u. as the used voltage values. It is given

by: RMSE =
√

1
n

∑n
t=1(Vm1,t − Vm,t)2.

• Coefficient of Determination (R2): R2 measures the proportion of the variance in
Method 1 that is predictable from the other methods. It is given by: R2 = 1 −∑

t=1n(Vm1,t−Vm,t)2∑
t=1n(Vm1,t− ¯Vm1)2

, where ¯Vm1 is the mean of the optimal voltage values in Method 1.

Table 3 shows the performance metrics of Methods 0, 2 and 3 in terms of voltage mag-
nitude compared with the centralized OPF-based solution of Method 1. In absolute terms,
the error metrics are very low because the behavior of all methods are the same or really
close at non-problematic hours, e.g., at night, or at operational conditions that are not close
to the limits. Thus, the relative comparison of the metrics is more relevant for the scope of
this paper.

The results of the comparison showed that Method 2 resulted in the lowest error values
across all four metrics, indicating that it is the closest to the benchmark optimal case. On the
contrary, the current BaU shows the worst behavior in terms of these metrics showing that
there is potential for improvement by applying more sophisticated decentralized methods.
Method 3 shows intermediate error values closer to Method 1 than Method 0. The main
reason for that is the continuous reactive power control (see Fig. 7), that changes the voltage
compared to the OPF case even at non-problematic time periods.

3.4.3. Qualitative evaluation

In this part, we discuss the strengths and limitations of each method. The currently
implemented local control schemes (i.e., Method 0), can scale easily to very large networks,
do not show privacy concerns and do not require training effort. However, they often result
in poor performance as they cannot achieve global optimality and can only consider local
constraints. On the other side of the spectrum, the centralized OPF-based method (i.e.,
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Table 3: Performance metrics of the examined methods compared to the optimal centralized solution.

MAE MSE RMSE R2

Vm0 0.005340 0.000171 0.013059 0.457739
Vm2 0.000740 0.000003 0.001848 0.889138
Vm3 0.007145 0.000080 0.008947 0.745467

Method 1) works as a benchmark in terms of optimality, it can consider both local and global
constraints, and can take into consideration any objective. However, it shows significant
drawbacks regarding privacy, as all information is collected by one entity, and scalability. It
requires a reliable bi-directional communication network, it is sensitive to modeling errors
and uncertainties and is costly for large-scale systems. On the other hand, state-of-the-art
ML-based methods, i.e., the supervised learning (Method 2) and RL approach (Method 3)
examined in this paper, show a good trade-off between high performance with some training
effort trying to combine the best of the previous two worlds. Method 2 could imitate very well
the optimal response under expected normal conditions, while Method 3 has the advantage
of being capable of adapting to changes in the system over time. For example, if another
agent, such as a PV unit, is installed in the network, it will learn from experience and adapt
to changing conditions without requiring re-training that is necessary for Method 2. A main
difference of the ML-based methods is related to the way they try to approach the optimality
of the central OPF scheme. The supervised learning Method 2 modifies the well-known and
widely used local control schemes in order to customize them based on their location and
grid challenges. The deep RL scheme of Method 3 aims at constructing a reward function
to imitate the objective function of the OPF case. In this paper, only local information is
used to allow a fair comparison of the studied decentralized methods.

Finally, Table 4 summarizes the findings and provides a qualitative evaluation of the
used decentralized control methods in terms of computational burden for the training stage,
scalability potentials, privacy-preserving capabilities, suitability to consider local and/or
global constraints, and optimality. Overall, each method shows different characteristics in
terms of limitations and strengths. The choice of method depends on the system’s control
requirements, constraints, data availability, available communication network, anticipation
of frequent system’s changes, and objectives of the controlled distribution system.

4. Conclusion

The increasing controllability and observability in distribution networks call upon more
advanced control schemes that are scalable, optimal, and can consider privacy characteristics
and the system’s operational constraints. Although centralized solutions perform great in
terms of optimality, they are associated with high costs and show robustness and privacy
concerns. In this paper, we quantitatively compare the centralized OPF behavior against
two machine-learning-based schemes based on supervised and reinforcement learning. We
have demonstrated through a case study that in the absence of a full communication and
monitoring infrastructure, the distribution grids can still optimize their grid operation safely,
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Table 4: Qualitative evaluation of the examined control methods.

Local
Schemes
(BaU)

Central
OPF

Supervised
Learning

Deep
RL

Computational
effort for training

✓ ✓✓ ✓✓✓ ✓✓✓

Scalability ✓✓✓✓ ✓ ✓✓ ✓✓
Privacy

Preservation
✓✓✓✓ ✓ ✓✓✓ ✓✓✓

Constraints’
consideration

Local: ✓
Global: ✗

Local: ✓
Global: ✓

Local: ✓
Global: ✓

Local: ✓
Global:✓

Optimality ✓ ✓✓✓✓ ✓✓✓ ✓✓✓
Adaptation to changes ✓✓ ✓✓✓✓ ✓ ✓✓✓✓

by applying decentralized controllers based on supervised and reinforcement learning (RL).
Furthermore, we provide intuition regarding the strengths and limitations of each method,
highlighting the overall good performance of ML-based schemes across all examined criteria.
For the specific benchmark European low-voltage grid and the available generating and
consumption data, the supervised approach achieved the best results in terms of approaching
the centralized optimal solution. It showed the maximum R2 and the lowest MAE, MSE,
and RMSE values. The RL method is also very promising since it can continuously adapt
to changes when the operational conditions or the system’s topology change. Future work
will consider 3 different dimensions: first, incorporating more training data and controllable
agents, such as electric vehicles, battery energy storage systems, and shiftable loads that
require incorporating time constraints increasing the needed computational effort; then, it
would be beneficial to use larger networks with real-world data and evaluate the control
schemes in a real larger system considering the system’s dynamics, interactions with the
network’s controlling devices, such as voltage regulating transformers, and implementation
challenges; finally, further research is required in terms of reinforcement learning to study
how to optimally tune the algorithm’s parameters, investigate the multi-agent behavior
where multiple agents have similar reward functions and explore the interactions between
transmission and distribution voltage levels.
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