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 A B S T R A C T

The increasing penetration of Renewable Energy Sources (RES) in electricity grids has led to the gradual 
decommissioning of conventional generators and, thus, to a decrease in the available inertia and other 
frequency support reserves. Consequently, the frequency security of power systems, in particular islanded low-
inertia ones, is compromised, leading to faster and more extreme frequency deviations following disturbances. 
There is an urgent need to incorporate faster frequency reserves that can stabilize the system and enhance its 
resilience and reliability. This paper first investigates the impact of various frequency support mechanisms on 
the system frequency security in low-inertia grids. Then, we propose a novel, data-driven, gradient-descent-
based method, that combines Dynamic Security Assessment (DSA) with linear predictions to optimize Fast 
Frequency Response (FFR) sizing for low-inertia grids. The performance of the proposed approach is evaluated 
using the dynamic model of Cyprus across 500 selected historical operating scenarios. The results demonstrate 
fast convergence, achieving the target frequency Nadir with minimal computational effort.
1. Introduction

In electric power systems, the power generated must always be bal-
anced against the power consumed at any given moment. Any deviation 
from this equilibrium results in a power imbalance that directly affects 
the rotational speed of synchronous generators, causing deviations in 
the electrical frequency of the system. This relationship is described 
by the swing equation, which models the dynamics of rotor motion 
in response to active power variations [1]. Large power imbalances 
frequently arise in power systems due to unexpected interruptions 
in production or consumption, commonly referred to as disturbances, 
resulting in significant frequency deviations. Their nature depends on 
the pre-disturbance operating conditions, the size, type, and location of 
the disturbance, and the available frequency support reserves.

Fig.  1 illustrates the post-disturbance frequency response following 
a loss of generation under different operating conditions. The main 
characteristics of the post-disturbance frequency related to security are 
the initial Rate of Change of Frequency (RoCoF), the frequency Nadir, 
and the steady-state post-fault frequency. Transmission System Oper-
ators (TSOs) are usually responsible for ensuring sufficient frequency 
support reserves [2,3] to maintain a secure post-disturbance frequency 
response.
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Traditional power grids heavily rely on large power plants that 
use synchronous generators (SG) to provide Kinetic Energy (KE) and 
Frequency Containment Reserves (FCR) to ensure post-disturbance fre-
quency security. However, to achieve the sustainability goals set by 
world governments [4] and reduce dependence on fossil fuels, the 
penetration of RES is constantly increasing, leading to the decommis-
sioning of conventional power plants (SG-based). Consequently, this 
reduces the available KE and FCR and causes significant frequency reg-
ulation challenges, especially in low-inertia power systems [1,3]. More 
specifically, the post-disturbance frequency behavior of the system 
deteriorates, leading to a worsened RoCoF, Nadir and post-fault steady-
state frequency. This is shown graphically in Fig.  1, which illustrates 
the impact of the increasing RES penetration on the post-fault system 
frequency response in Cyprus. In all the scenarios presented in this fig-
ure, the load consumption remained the same, while the only changes 
were in the available FCR and the KE due to the decommissioning of 
conventional generators.

To address this problem, various technologies and solutions have 
been investigated over the years [5,6]. The use of Battery Energy 
Storage Systems (BESS) has been proposed to provide the necessary 
frequency support due to their speed of response, adaptability, and 
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Fig. 1. Post-disturbance frequency response for different RES levels.
robustness [5,6]. Consequently, many TSOs are considering Fast Fre-
quency Response (FFR) reserves through BESS as a new support ser-
vice to mitigate post-disturbance frequency-related challenges. In some 
countries, system operators have already incorporated FFR into their 
grid codes as a reserve service to enhance frequency regulation. For 
instance, FFR was implemented in the Nordics in May 2020 [7], in 
Cyprus at the end of 2024 [8], in Australia at the end of 2023 [9], and 
in Ireland (EirGrid). Two primary categories of FFR control methods are 
employed: (1) droop-based control, where the response of the BESS is 
proportional to the frequency deviation or RoCoF; and (2) step-change 
response, where FFR is activated upon reaching a predefined frequency 
or RoCoF threshold.

1.1. Objectives

One of the key challenges when introducing FFR services, as ad-
dressed in this work, is determining the power (MW) and energy (MWh) 
capacity of the BESS required to provide the necessary support. While 
sizing the BESS to provide KE, if applicable, and FCR is relatively 
straightforward due to the linear nature of frequency dynamics related 
to the RoCoF and post-fault steady-state frequency (see Section 2 
of [10]), the frequency dynamics associated with the frequency Nadir 
are highly non-linear. This non-linearity makes the BESS sizing process 
for improving the Nadir through FFR significantly more complex.

This work proposes a novel, data-driven methodology to optimize 
FFR sizing for low-inertia grids. The proposed method integrates DSA 
with a linear FFR power estimator utilizing a gradient descent-based 
approach to determine the required FFR capacity that ensures the 
frequency Nadir remains within acceptable limits. Additionally, this 
study aims to demonstrate the fast convergence and effective perfor-
mance of the proposed approach, minimizing computational overhead 
while achieving the target frequency response. Another key objective 
is to enable TSOs to accurately assess the necessary FFR capacity for 
maintaining frequency Nadir after disturbances, thereby facilitating 
the integration of higher levels of RES. Ultimately, this framework 
supports decarbonization efforts and ensures compliance with opera-
tional constraints by providing a practical and efficient methodology 
for determining FFR capacity requirements.

1.2. Literature review

Several methods have been proposed in the literature to address 
the FFR sizing problem. The tuning and sizing of a BESS that uti-
lizes conventional frequency droop-based controller using a chaotic 
artificial bee colony scaled by fitness metaheuristic optimization under 
deterministic worst-case scenarios was proposed in [11]. The objective 
function of this study is to minimize Nadir and RoCoF after a significant 
event. To improve Nadir, RoCoF, and voltage deviation, in [12] a 
multi-objective binary gray wolf optimization approach is investigated 
to optimize storage system size and placement using a droop-based 
controller. In [13], the rated power of the BESS and the gain of a droop-
based controller were selected to minimize a cost function using the 
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BAT optimization algorithm (BOA). This optimization was subject to 
the constraint that the Nadir must remain below the threshold of the 
first stage in the Under-Frequency Load Shedding (UFLS) protection 
scheme. In [14], the authors aim to optimally size a BESS to provide 
primary frequency control, thereby maximizing the profit for the owner 
based on historical frequency measurement data. In [15], the meta-
heuristic gray wolf optimization algorithm is used to determine the size 
of the BESS that will provide the frequency response to minimize Nadir.

A detailed optimization methodology that utilizes a mathematical 
model for frequency dynamics to integrate frequency stability con-
straints into BESS sizing is proposed in [16]. This work focuses on 
microgrids and effectively addresses both grid-connected and islanded 
modes. This method is implemented in a small number of scenarios 
and does not consider UFLS, restricting its broader applicability in 
larger and more complex systems. In place of optimization algorithms, 
an inexpensive computational approach for the ESS size is proposed 
in [17], which estimates the system performance after a disturbance 
using an analytical method. In [18], simplified analytical equations 
are used to calculate the size of the BESS required to provide the 
frequency response based on a reference outage event. In [19], a step 
reduction iterative algorithm was investigated to dimension the BESS 
size that provides FFR to regulate the maximum frequency deviation 
after an outage. An iterative method for different BESS power levels 
is proposed in [20] where the optimal size is determined by two 
semi-empirical criteria: (1) increasing the BESS size does not provide 
significant improvement, and (2) based on BESS maximum discharge 
power efficiency.

1.3. Novelty and contributions

Unlike the continuous support provided by droop-based methods, 
the FFR method considered in this work operates with a discrete 
activation pattern, rendering most existing methodologies unsuitable 
for optimizing BESS sizing. Our methodology addresses this challenge 
by incorporating the discrete nature of FFR into the DSA framework. 
While state-of-the-art metaheuristic methodologies typically require 
numerous iterations per deterministic scenario – making them compu-
tationally prohibitive when analyzing hundreds of historical operating 
conditions – our gradient descent-based approach achieves convergence 
with significantly fewer iterations. This efficiency advantage is particu-
larly notable when compared to exhaustive iterative methods [20] that 
evaluate all possible BESS sizes without optimization heuristics.

Existing approaches [11,12,15] frequently focus on general fre-
quency response improvement rather than targeting specific Nadir 
thresholds, often resulting in oversized storage systems. Moreover, a 
critical gap persists in the computational methods for disturbance event 
analysis. Current methodologies relying on static equations suffer from 
accuracy limitations due to necessary simplifying assumptions and fail 
to account for crucial protection schemes like UFLS. Our proposed 
method addresses these limitations through full dynamic simulation 
that explicitly models system nonlinearities and discrete protection 
events.

The principal contributions of this work are:
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• Quantitative characterization of the nonlinear interactions be-
tween KE, FFR, FCR, and frequency Nadir in low-inertia systems

• A novel data-driven algorithm for FFR sizing that incorporates 
UFLS protection schemes through dynamic security assessment

• Experimental validation using real-world operational data from 
the Cyprus power system, demonstrating the method’s computa-
tional efficiency and practical effectiveness

This paper is structured as follows. In Section 2, a brief explana-
tion of frequency control and relevant frequency reserve products is 
provided. Section 3 details the proposed framework for sizing the FFR 
requirements. The results are analyzed in Section 4. Finally, conclusions 
are drawn in Section 5.

2. Technical background

2.1. Frequency support mechanisms and products

Correction of power imbalances in power systems (and, therefore, 
frequency deviations) has traditionally been performed in a hierarchical 
manner, where each control stage is distinct from the subsequent 
stages. In the initial stage after a disturbance, the KE response is 
activated within a few milliseconds (ms), helping to maintain the initial 
RoCoF [21]. Following this, the FCR comes into play within a few 
seconds, aiming to stabilize the frequency [2]. In the third stage, the 
FRR is deployed with a response time of several minutes to restore 
the frequency to its nominal value. Finally, replacement reserves (RR) 
are utilized to replenish the available reserves and prepare the system 
for future disturbances [2,22,23]. The FRR and RR products are not 
relevant to the time scales investigated in this work and will therefore 
not be addressed.

2.1.1. Kinetic energy (KE)
In power systems, KE refers to the energy stored in large rotating 

generators and certain industrial motors. This stored energy is particu-
larly valuable in situations of power imbalance [24,25]. Lower system 
inertia can lead to increased frequency sensitivity during disturbances, 
as any change in power balance has a more immediate impact on 
frequency due to limited KE [21]. It has been shown (see Section 2 
of [10]) that KE has a direct impact on the initial RoCoF after a 
disturbance and a secondary, minor impact on the frequency Nadir.

2.1.2. Frequency containment reserves (FCR)
The scope of FCR1 is to restrict the frequency of the network 

within predefined levels [26]. FCR is enabled within a few seconds, 
with full activation occurring no later than 30 s [2], and its duration 
can last up to 30 min, depending on the technical characteristics of 
the system [27]. The power contribution of FCR varies linearly with 
the frequency deviation up to a maximum value. It is an asymmetric 
product, meaning that it separately defines the upward and downward 
reserve needs [28]. It has been shown (see Section 2 of [10]) that 
FCR has a direct impact on the post-fault frequency steady state and 
a secondary, minor impact on the frequency Nadir.

2.1.3. Under-frequency load shedding (UFLS)
A low-frequency Nadir after a disturbance can trigger UFLS pro-

tections in the power system when the FCR is not fast enough or 
when the RoCoF is too high [29]. UFLS schemes stop the frequency 
drop after a disturbance by disconnecting feeders from the distribution 
system to ‘‘shed load’’. Various stages of UFLS are usually defined, 
with each stage progressively disconnecting different segments of the 
load. UFLS safeguards against low-frequency Nadir and minimizes the 

1 In many countries, this product is referred to as primary frequency 
response.
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requirements for FCR. However, excessive use of UFLS leads to low 
reliability and significant ‘‘lost load’’ and is considered undesirable 
due to its negative socio-economic impacts. Unfortunately, low-inertia 
power systems experience an increase in UFLS activations [30] as low 
KE and FCR influence the frequency Nadir.

2.2. Fast frequency response (FFR)

As the system experiences higher penetration of RES and reduced 
KE, the time gap between the KE response and FCR activation leads 
to a lower Nadir. FFR plays a pivotal role in bridging this gap and 
preventing UFLS activations [25,26]. FFR reacts within a very short 
time frame, usually in less than one second after a disturbance [25], 
injecting power into the grid for a short period to reduce the frequency 
Nadir. Although FFR complements KE and FCR, it does not reduce the 
minimum reserve requirements for these mechanisms and, therefore, 
cannot replace them [24]. Fig.  2 shows an example of how FFR affects 
the frequency Nadir during a generation loss event of 95 MW in a power 
system with a total load consumption of 825 MW, PV generation of 100 
MW, and wind generation of 50 MW in a low-inertia system. This figure 
clearly demonstrates that FFR impacts the frequency Nadir but does not 
affect RoCoF or the post-fault steady-state frequency.

There are several implementations of FFR, each offering unique 
characteristics [31]. Some of these methodologies are presented in [1,
25]. In line with the analysis conducted by EirGrid and NEM [25], 
an FFR implementation that follows a step response will be used in 
the current work. Fig.  2 illustrates the behavior of the active power 
response of BESS when receiving an FFR activation signal. A local 
frequency measurement unit detects the frequency level, and when 
it drops below a certain threshold (usually 49.7 Hz), the local con-
troller immediately injects the maximum FFR power. Subsequently, 
the support duration lasts for 30 s. Finally, the deactivation process 
takes approximately 20 s, during which power is reduced at a constant 
rate, allowing sufficient time for the system’s dynamics to stabilize the 
frequency without causing abrupt changes in power.

2.3. Interaction between KE, FFR, FCR and Nadir

Three critical frequency stability indicators must be analyzed fol-
lowing disturbances in low-inertia systems: RoCoF, post-fault steady-
state frequency, and frequency Nadir. Excessive RoCoF risks triggering 
generator protections and cascading outages, while a depressed Nadir 
may violate Frequency Ride-Through (FRT) requirements or activate 
UFLS. Prolonged low steady-state frequencies can disrupt synchronized 
operations and lead to sustained outages.

The initial RoCoF derives from system inertia and power imbalance 
through the linear relationship (1) while steady-state frequency devi-
ation 𝛥𝑓max depends on the combined regulation from generators and 
loads as shown in (2). 

RoCoF =
𝛥𝑃 ⋅ 𝜔𝑛
2𝐻

(1)

𝛥𝑓max =
𝛥𝑃

𝐿𝑅 + 𝐺𝑅
(2)

where 𝛥𝑃  represents the power imbalance, 𝜔𝑛 the nominal angular fre-
quency, 𝐻 the total system inertia constant, 𝐿𝑅 the load self-regulation 
coefficient, and 𝐺𝑅 the generator frequency containment reserve capac-
ity. These linear relationships enable straightforward inertia and FCR 
requirement calculations [32].

However, the influence of KE and FCR on the frequency Nadir 
following a significant event exhibits a strongly non-linear relationship, 
incorporating KE, FCR response time, and FCR capacity [6]. A dynamic 
assessment of the Cyprus power system, shown in Fig.  3, demonstrates 
the impact of these factors under various scenarios. The scenarios, 
representing one year of historical operating points and filtered for 
the most critical conditions (e.g., largest post-fault imbalance power), 
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Fig. 2. Loss of generator event (𝛥𝑃 = 95 MW), frequency response and corresponding FFR active power response.
Fig. 3. Post-disturbance frequency Nadir (color scale) as a function of KE (x-axis) and 
FCR (y-axis). Warmer colors indicate safer Nadir > 49 Hz. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

include total load consumption ranging from 350 MW to 1200 MW 
and RES generation varying between 11 MW and 415 MW (installed 
capacity: 765 MW).

Fig.  3 reveals a general trend: higher KE and FCR levels lead 
to improved Nadir (warmer colors). However, some inconsistencies 
are apparent—scenarios with lower KE and FCR occasionally produce 
higher Nadir values due to the faster response times of FCR-providing 
units. This emphasizes the importance of FCR activation speed along-
side capacity. In summary, higher KE and larger FCR capacity improve 
Nadir values. Crucially, faster FCR response times further enhance 
results, highlighting their role in mitigating frequency issues.

To ensure the frequency security, the Cyprus TSO must maintain 
Nadir values above 49 Hz. In Fig.  4a, critical historical operating points 
exhibit frequency drops below this threshold (red). FFR, with rapid ac-
tivation, can address this issue by mitigating low-frequency Nadir prob-
lems independently of KE and FCR capacity. Figs.  4b and 4c illustrate 
the impact of incorporating 10 MW and 20 MW of FFR, respectively, 
reducing frequency violations and increasing system resilience.

3. Methodology

This section presents the proposed data-driven approach for de-
termining the optimal BESS size for FFR operation, summarized in 
Fig.  5. The algorithm iteratively computes the required FFR capacity 
to achieve a frequency Nadir close to the target value (𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟). It 
integrates DSA to calculate the deviation of the Nadir from 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 and 
employs a gradient descent-based linear prediction method to estimate 
the necessary FFR reserves in each iteration, as detailed in the flowchart 
in Fig.  6.

Initially, historical operating points are filtered to retain only the 
most critical scenarios. In the first iteration, FFR is set to zero, and 
dynamic simulations are performed for all scenarios, considering an 
outage of the largest infeed generator. Scenarios where the frequency 
4 
Nadir violates the threshold are retained, and the FFR estimator uses 
the dynamic response to predict the required FFR to bring the Nadir 
closer to the target value. The process repeats until convergence.

The following subsections provide a detailed analysis of the method-
ology.

3.1. Scenario selection

The proposed data-driven approach utilizes historical operational 
data to size FFR. To reduce computational complexity, a filtering 
process is applied to retain only the most critical operating scenarios. 
Specifically, the filter selects scenarios where the largest generator 
(highest infeed) operates at the top 1% of its maximum power output 
across the entire dataset. These scenarios represent the most severe 
conditions for frequency stability.

3.2. Error estimation based on dynamic security assessment (DSA)

For the selected scenarios, a DSA is conducted, assuming the dis-
connection of the largest infeed in each case. The DSA uses non-linear 
dynamic models of power system components to simulate the distur-
bance event and capture the corresponding frequency dynamics. Each 
scenario is simulated over 60 s to extract key post-disturbance metrics, 
including frequency Nadir, RoCoF, post-fault steady-state frequency, 
and FCR activation timing.

Initially, the FFR power is set to zero (𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,0 = 0) for the first DSA 

computation. The process is embarrassingly parallel for each scenario, 
allowing simulations to be accelerated using multicore computing. 
Once the DSA simulations are complete, scenarios where the frequency 
Nadir falls below the target (𝑓Nadir < 𝑓 tgtNadir) or where the existing 
FFR causes the Nadir to overshoot the target (𝑓Nadir ≥ 1.01 ⋅ 𝑓 tgtNadir) 
are retained. These represent cases where insufficient or excessive 
FFR is applied, respectively, ensuring that the methodology focuses on 
scenarios requiring adjustment.

3.3. FFR estimation based on linear prediction

For scenarios that violate the requirements defined in the previous 
paragraph, the estimated FFR needs are calculated using the FFR linear 
estimator in Algorithm 1. After the process is completed, we extract 
the minimum and maximum FFR requirements for all the scenarios 
analyzed and iterate. There are two options in the proposed estimator 
for calculating the FFR power (𝑃𝑚𝑎𝑥

𝐹𝐹𝑅) in Algorithm 1. In the first case, 
activation of UFLS is not allowed – thus, we assume that the 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 is 
higher than the first setpoint of activation of UFLS (𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 ≥ 𝑓𝑈𝐹𝐿𝑆,1). 
In the second case, the activation of one level of UFLS is allowed. This 
option provides a compromise between reliability and investment costs 
for FFR.
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Fig. 4. Post-disturbance frequency Nadir as a function of KE, FCR, and FFR Active Power (a) 0MW, (b) 10MW and (c) 20MW. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Simplify flowchart of the proposed iterative methodology.
𝑡

𝑃

𝑃

Algorithm 1: FFR estimator at each iteration of algorithm at Fig.  6
Data: Filtered scenarios
Result: FFR requirements (𝑃𝑚𝑎𝑥

𝐹𝐹𝑅,𝑖) for each scenario
if avoiding UFLS then

Calculate 𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖 based on (3);

else if allowing 1st level UFLS then
Calculate 𝑃𝑚𝑎𝑥

𝐹𝐹𝑅,𝑖 based on (5);

3.3.1. FFR estimation based on linear prediction without UFLS activation
The following equations are used to estimate the required FFR 

values (𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖) for the 𝑖th (𝑖 > 0) iteration: 

𝛥𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑖 = 𝛥𝑃𝑚𝑎𝑥 −

𝑓 𝑠𝑡𝑎𝑟𝑡
𝐹𝐹𝑅 − 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟

𝑡𝑁𝑎𝑑𝑖𝑟
𝑖−1 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅

⋅ 2 ⋅ 𝐾𝐸
𝑓𝑁

− (3a)

𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑖−1 − 𝑃𝑚𝑒𝑎𝑛

𝐿𝑅 − 𝑃𝑚𝑒𝑎𝑛
𝐹𝐶𝑅,𝑖−1

𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖 = 𝛥𝑃𝑚𝑒𝑎𝑛

𝐹𝐹𝑅,𝑖 ⋅
𝑡𝑁𝑎𝑑𝑖𝑟
𝑖−1 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅

𝑡𝑁𝑎𝑑𝑖𝑟
𝑖−1 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅 −

𝑇𝑚𝑎𝑥
𝐹𝐹𝑅
2

+ 𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖−1 (3b)

where:

𝐾𝐸 is the available kinetic during the disturbance event,
𝑓 is the nominal frequency,
𝑁
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𝑓 𝑠𝑡𝑎𝑟𝑡
𝐹𝐹𝑅 is the FFR activation frequency,

𝑠𝑡𝑎𝑟𝑡
𝑖−1,𝐹𝐹𝑅 is the FFR activation time based on previous iteration,
𝑚𝑒𝑎𝑛
𝐹𝐶𝑅,𝑖−1 is the average FCR of the previous iteration,
𝑃𝑚𝑒𝑎𝑛
𝐿𝑅 is the average load self-regulation calculated using (4),

𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑖−1 is the FFR average power of the previous iteration from the 

FFR activation point to UFLS,
𝑇 𝑚𝑎𝑥
𝐹𝐹𝑅 is the time that the unit needs to take the peak value from the 

time of activation,
𝑡𝑁𝑎𝑑𝑖𝑟
𝑖−1 is the Nadir time of the previous iteration,

𝛥𝑃𝑚𝑎𝑥 is the power deviation of the disturbance event.

Eq.  (3a) uses a linear estimation approach, depicted in Fig.  7a 
with the blue line, to estimate the required 𝑃𝑚𝑎𝑥

𝐹𝐹𝑅,𝑖 based on Dynamic 
Security Assessment (DSA) results. The black line shows the actual 
frequency response from the previous iteration, while the green line 
represents the updated response after incorporating the computed FFR 
in the dynamic model.

The linear estimator is inspired by the swing equation, which relates 
the RoCoF to the power imbalance (𝛥𝑃 ) as 𝑅𝑜𝐶𝑜𝐹 = 𝛥𝑃 ⋅ 𝜔𝑛

2⋅𝐻𝑠𝑦𝑠
. Here, 

𝛥𝑃  evolves over time, modified by FFR, FCR power injections, and load 
self-regulation, represented as a mean value in (3a). An increase in 
kinetic energy or FCR capacity reduces the negative terms (𝐾𝐸 and 
𝑃𝑚𝑒𝑎𝑛
𝐹𝐶𝑅,𝑖−1), thereby decreasing the FFR requirement. In critical scenarios, 
as the time difference between the frequency Nadir and FFR activation 
(𝑡 − 𝑡 ) increases, the denominator grows, requiring more FFR 
𝑁𝑎𝑑𝑖𝑟 𝑠𝑡𝑎𝑟𝑡
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Fig. 6. Flowchart of proposed methodology for 𝐹𝐹𝑅 sizing.
power. Conversely, lowering the targeted Nadir (𝑓𝑡𝑔𝑡) or activating FFR 
earlier (𝑡𝑁𝑎𝑑𝑖𝑟) reduces the FFR requirements by affecting the numerator 
(𝑓𝑠𝑡𝑎𝑟𝑡−𝑓𝑡𝑔𝑡). These dynamics make FFR sizing sensitive to Nadir targets, 
activation times, and system conditions.

Eq.  (3b), derived from Fig.  7b, converts the mean estimated FFR 
power (𝑃𝑚𝑒𝑎𝑛

𝐹𝐹𝑅 ) into the maximum value (𝑃𝑚𝑎𝑥
𝐹𝐹𝑅) used for FFR sizing. In 

this context, the mean value is calculated as the sum of areas A1, A2, 
and A3 divided by their corresponding time intervals. A1 represents the 
FFR activation time, A2 the time to reach UFLS activation, and A3 the 
time to reach the Nadir.

The mean load self-regulation power (𝑃𝑚𝑒𝑎𝑛
𝐿𝑅 ) accounts for the natu-

ral change in load power during the event, which occurs as a response 
to frequency variations and contributes to system stability [33]. It is 
computed between the FFR activation and the targeted frequency using 
Eq. (4): 

𝑃𝑚𝑒𝑎𝑛
𝐿𝑅 = 𝑘 ⋅ 𝑃 𝑡𝑜𝑡𝑎𝑙

𝑙𝑜𝑎𝑑 ⋅
(𝑓𝑁 − 𝑓 𝑠𝑡𝑎𝑟𝑡

𝐹𝐹𝑅) + (𝑓𝑁 − 𝑓 𝑡𝑔𝑡
𝑁𝑎𝑑𝑖𝑟)

2
(4)

where 𝑘 is the load self-regulation coefficient, and 𝑃 𝑡𝑜𝑡𝑎𝑙
𝑙𝑜𝑎𝑑  is the total load 

demand prior to the disturbance.

3.3.2. FFR estimation based on linear prediction with first-stage UFLS 
activation

In some cases, allowing the activation of the first UFLS stage can 
significantly reduce the required FFR capacity without compromising 
the secure operation of the system. In this case, the following equations 
6 
are used to estimate the required FFR values (𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖) for the 𝑖th 

iteration (𝑖 > 0): 
𝑓 𝑠𝑡𝑎𝑟𝑡
𝐹𝐹𝑅 − 𝑓 1𝑠𝑡

𝑈𝐹𝐿𝑆

𝑡1𝑠𝑡𝑖−1,𝑈𝐹𝐿𝑆 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅

=
𝑓𝑁

2 ⋅𝐾𝐸
⋅ (𝛥𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑒𝑎𝑛

𝐹𝐹𝑅,𝑖−1,𝑎 (5a)

−𝑃𝑚𝑒𝑎𝑛
𝐿𝑅,𝑎 − 𝑃𝑚𝑒𝑎𝑛

𝐹𝐶𝑅,𝑖−1,𝑎 − 𝛥𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑎)

𝑓 1𝑠𝑡
𝑈𝐹𝐿𝑆 − 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟

𝑡𝑁𝑎𝑑𝑖𝑟
𝑖−1 − 𝑡1𝑠𝑡𝑖−1,𝑈𝐹𝐿𝑆

=
𝑓𝑁

2 ⋅𝐾𝐸
⋅ (𝛥𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑒𝑎𝑛

𝐹𝐹𝑅,𝑖−1,𝑏 − 𝑃𝑚𝑒𝑎𝑛
𝐿𝑅,𝑏

−𝑃𝑚𝑒𝑎𝑛
𝐹𝐶𝑅,𝑖−1,𝑏 − 𝑃 1𝑠𝑡

𝑈𝐹𝐿𝑆 − 𝛥𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑏) (5b)

𝑃𝑚𝑒𝑎𝑛
𝐿𝑅,𝑎 = 𝑘 ⋅ 𝑃 𝑡𝑜𝑡𝑎𝑙

𝑙𝑜𝑎𝑑 ⋅
(2 ⋅ 𝑓𝑁 − 𝑓 𝑠𝑡𝑎𝑟𝑡

𝐹𝐹𝑅 − 𝑓 1𝑠𝑡
𝑈𝐹𝐿𝑆 )

2
(6a)

𝑃𝑚𝑒𝑎𝑛
𝐿𝑅,𝑏 = 𝑘 ⋅ 𝑃 𝑡𝑜𝑡𝑎𝑙

𝑙𝑜𝑎𝑑 ⋅
(2 ⋅ 𝑓𝑁 − 𝑓 1𝑠𝑡

𝑈𝐹𝐿𝑆 − 𝑓 𝑡𝑔𝑡
𝑁𝑎𝑑𝑖𝑟)

2
(6b)

𝑃 1𝑠𝑡
𝑈𝐹𝐿𝑆 = 𝐿𝐷%,1𝑠𝑡

𝑠ℎ𝑒𝑑 ⋅ 𝑃 𝑡𝑜𝑡𝑎𝑙
𝑙𝑜𝑎𝑑 − 𝑃𝑉 %,1𝑠𝑡

𝑠ℎ𝑒𝑑 ⋅ 𝑃 𝑡𝑜𝑡𝑎𝑙
𝑃𝑉 (6c)

𝛥𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑎 =

(𝑡1𝑠𝑡𝑖−1,𝑈𝐹𝐿𝑆 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅 −
𝑇𝑚𝑎𝑥
𝐹𝐹𝑅
2 )

𝑡1𝑠𝑡𝑖−1,𝑈𝐹𝐿𝑆 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖−1,𝐹𝐹𝑅

⋅ 𝛥𝑃𝑚𝑎𝑥
𝑖,𝐹𝐹𝑅 (6d)

𝛥𝑃𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑏 = 𝛥𝑃𝑚𝑎𝑥

𝑖,𝐹𝐹𝑅 (6e)

𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖 = 𝑃𝑚𝑎𝑥

𝐹𝐹𝑅,𝑖−1 + 𝛥𝑃𝑚𝑎𝑥
𝑖,𝐹𝐹𝑅 (6f)

where:



S. Panagi and P. Aristidou

𝑃

𝑃

Sustainable Energy, Grids and Networks 42 (2025) 101699 
Fig. 7. (a) Post-disturbance frequency response (black is the simulated response without FFR, green is the target response with the FFR, blue is the linear estimator), (b) BESS 
FFR active power response.
𝑓 1𝑠𝑡
𝑈𝐹𝐿𝑆 is the frequency at which the first UFLS stage activates,

𝑡1𝑠𝑡𝑖−1,𝑈𝐹𝐿𝑆 is the time at which the first UFLS stage of the previous 
iteration activated,

𝑚𝑒𝑎𝑛
𝐹𝐹𝑅,𝑖−1,𝑎∕𝑏 is the FFR average power of the previous iteration where a

corresponds to the time from FFR activation until the first 
UFLS stage, and b corresponds to the time from the first 
UFLS stage activation until the 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 value.
𝑃𝑚𝑒𝑎𝑛
𝐿𝑅,𝑎∕𝑏 is the average load self-regulation where a corresponds 

from the FFR activation time until the first UFLS stage 
activation and b corresponds from the first UFLS stage 
activation time until the 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟. Calculated using (6a) and 
(6b) respectively,

𝑚𝑒𝑎𝑛
𝐹𝐶𝑅,𝑖−1,𝑎∕𝑏 is the FCR average power of the previous iteration where a

corresponds to the time from FFR activation until the first 
UFLS stage, and b corresponds to the time from the first 
UFLS stage activation until the 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 value,
𝑃 1𝑠𝑡
𝑈𝐹𝐿𝑆 is the net power disconnected considering the first-stage 

UFLS activation.

Eqs. (5) use the same estimation approach as (3a) but divide the op-
eration into two time segments. In the first segment, (5a) describes the 
frequency response before the first UFLS activation, and in the second 
segment, (5b) describes the frequency response from the moment UFLS 
is activated until the Nadir. This segmentation is necessary due to the 
discrete nature of UFLS protection. As mentioned above, the 𝛥𝑃  of the 
system varies during the event. When UFLS activation occurs, there is a 
significant reduction in the power imbalance. Therefore, segmentation 
is mandatory and helps improve the accuracy of the solution.

To define the maximum FFR power in each iteration (𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖), (5) is 

solved for 𝑃𝑚𝑎𝑥
𝐹𝐹𝑅,𝑖. When more than one UFLS stage is accepted, (5) can 

be modified accordingly by dividing it into additional time segments.

3.4. BESS power and energy sizing

After the iterative method converges (when there are no pending 
scenarios) or the maximum number of iterations is reached, the FFR 
requirement is determined as the maximum value across all analyzed 
scenarios (infinite norm). Thus, the BESS power capacity must at least 
match this value to ensure compliance with FFR requirements. The 
7 
energy capacity of the BESS is then computed based on the maxi-
mum power requirement by integrating the power response over time, 
equivalent to calculating the area under the curve shown in Fig.  7b.

The energy requirement is calculated by dividing the response curve 
into segments (A1, A2, A3, A4, and A5) and summing the integrals 
of each. These integrals represent the energy contribution during the 
activation, support, and deactivation stages. For example, given the ac-
tivation time (𝑇act), deactivation time (𝑇deact), support duration (𝑇supp), 
and the maximum FFR power (𝑃maxFFR ), assuming linear activation and 
deactivation as shown in Fig.  7b, the total energy requirement can be 
calculated as follows: 

𝐸 = 𝑃max
𝐹𝐹𝑅 ⋅

(

𝑇𝑎𝑐𝑡+𝑇𝑑𝑒𝑎𝑐𝑡
2 + 𝑇𝑠𝑢𝑝𝑝

)

3600
(7)

4. Experimental results

In this section, the proposed algorithm was tested on the Cyprus 
power system, the diagram of which is shown in Fig.  8, to validate the 
methodology. The results are presented for two cases: one where no 
stage of UFLS is permitted and another where a single stage of UFLS is 
accepted.

The Cyprus power system consists of 26 conventional SG-based 
plants (steam, gas, and diesel). All generators are modeled with Auto-
matic Voltage Regulators (AVR), Governors (GOV), and Power System 
Stabilizers (PSS), as detailed by the TSO of Cyprus, ensuring an accurate 
representation of their dynamic behavior. Additionally, the system 
includes 155 MW of wind farms and 610 MW of distributed PV gen-
eration. Historical load data indicate a minimum demand of 300 MW 
and a peak of approximately 1240 MW.

This model, used by the TSO of Cyprus for operational and planning 
studies related to frequency services, includes a reduced network model 
while maintaining detailed dynamic models for generators, loads, and 
RES components. It is implemented in DIgSILENT PowerFactory and 
incorporates UFLS protection schemes and an aggregated BESS with the 
FFR implementation described in Section 2.2.

4.1. System parameters and scenario selection

The generator capacities for conventional plants are given in
Table  1. The minimum KE was calculated to keep the RoCoF within the 
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Fig. 8. One-line diagram of the simplified Cyprus system.
Table 1
Maximum generator active power dispatch.
 Generator Max power (MW) 
 GTG1-GTG5 20  
 DG1-DG6 15  
 CCGT-STM1 35  
 CCGT-STM2 35  
 GAS1-GAS4 45  
 STG1-STG6 45  
 STG7 120  
 STG 8–9 105  

Table 2
First UFLS levels in the Cyprus system.
 Stage Frequency 𝑃𝑉 𝑠ℎ𝑒𝑑

% ∕𝐿𝐷𝑠ℎ𝑒𝑑
%  

 1 49 4%  
 2 48.9 4%  
 3 48.8 3%  

Table 3
Test system parameters [8,34].
 Parameter Value  
 k 1%  
 Minimum KE 3000 MWs  
 Minimum FCR 120 MW  
 Freq. at normal operation 49.8–50.2 Hz  
 Freq. during disturbance 47–52 Hz  
 Post-fault freq. steady state 49.5–50.5 Hz  
 𝛥𝑃 120 MW  
 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟 48.9 & 49 Hz 

required limit of 𝑅𝑜𝐶𝑜𝐹𝑚𝑎𝑥 = 1 Hz/s. The first three stages of the UFLS 
protection scheme implemented in Cyprus are provided in Table  2. It 
should be noted that, due to the distributed nature of PVs in the system, 
load shedding also results in the disconnection of PV generation. Table 
3 defines all the simulated parameters considered.

Based on historical operational data from the Cyprus TSO, 500 
critical scenarios were selected for FFR sizing analysis. These scenar-
ios, compliant with minimum KE and FCR thresholds, featured load 
consumption ranging from 300 MW to 1200 MW under maximum 
generation output conditions (𝛥𝑃 = 120 MW). Each scenario simulated 
the disconnection of the largest generator at 𝑡 = 1 s through a dynamic 
security assessment.

The scenarios were classified into three operational regimes: Low
denoting minimal RES, FCR, and KE levels; Medium reflecting balanced 
8 
conventional-renewable operation; and High representing peak RES 
generation with ample reserves. Parameter ranges for these categories 
are detailed in Table  4, while Fig.  9 illustrates their distribution through 
a heatmap visualization.

4.2. Case I:

FFR sizing results without UFLS activation
In this analysis, the FFR sizing method does not allow for UFLS 

activation, so the frequency target was set to 𝑓 𝑡𝑔𝑡
𝑁𝑎𝑑𝑖𝑟 = 49 Hz. During 

the first iteration of the algorithm (with FFR initialized at zero), the 
DSA identified that 485 scenarios violated this requirement. Fig.  10a 
graphically illustrates the results of the first iteration. Then, the linear 
prediction of the FFR capacity is performed using (3a). Table  5 shows 
the evolution of the algorithm, which converges in four iterations. 
It should be noted that the majority of the violating scenarios in 
iterations 2–4 involve overshooting (i.e., the FFR calculated for these 
scenarios led to frequency Nadirs significantly higher than 𝑓 𝑡𝑔𝑡

𝑁𝑎𝑑𝑖𝑟). The 
infinite norm over the required FFR for all scenarios is 33 MW. As 
mentioned above, the energy consumption during FFR support is very 
small compared to the power due to the low supply duration, with an 
average consumption of 0.18 MWh.

Based on the results, the correlation between the initial frequency 
Nadir (Nadir value before FFR implementation) and the required FFR 
power is shown in Fig.  10b for all scenarios. It is evident that there 
is an almost linear correlation between the two. By examining this 
figure alongside Fig.  3, we can further demonstrate the sensitivity of 
the methodology’s output to variations in available KE and FCR within 
the system, underscoring how these parameters collectively influence 
FFR requirements. However, due to the non-linear correlation between 
KE and FCR with the Nadir, which arises from the varying FCR response 
times, direct estimation of FFR solely from KE and FCR is not possible. 
This highlights the need for a more detailed assessment incorporating 
response dynamics to improve predictive capability.

Furthermore, the correlation shown in Fig.  10c between the initial 
RoCoF (RoCoF before FFR implementation) and FFR power require-
ments reveals a notable trend: as RoCoF decreases, there is a corre-
sponding increase in FFR requirements. However, due to the varying 
FCR response times and FCR capacities across scenarios – factors inde-
pendent of RoCoF – a significant dispersion exists, making it difficult 
to establish a clear correlation.
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Table 4
Categorization of scenarios based on RES, FCR, and KE ranges.
 Category RES generation (MW) FCR capacity (MW) Kinetic energy (MWs) 
 Low 10–165 120–122 5335–7130  
 Medium 165–260 122–126 7130–7694  
 High 260–415 126–151 7694–9228  
Fig. 9. Scenario distribution across RES, FCR, and KE categories, with the color scale indicating the number of scenarios in each category combination. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Results without UFLS activation.
 Iteration No. of scenarios FFR (MW) Nadir (Hz) Energy (MWh)
 Analyzed Violating Min Max Min Max Average  
 1 500 485 0 0 47.69 49.27 0  
 2 485 416 4.9 33 49.04 49.17 0.25  
 3 416 29 3.9 26.5 49.01 49.12 0.17  
 4 29 0 4.9 19.2 49.1 49.12 0.12  
 Total 500 – 0 33 49.04 49.27 0.18  
Table 6
Results with first stage of UFLS accepted.
 Iteration No. of scenarios FFR Nadir Energy (MWh)
 Analyzed Violating Min Max Min Max Average  
 1 500 105 0 0 48.61 49.27 0  
 2 105 0 10 19 48.95 48.98 0.14  
 Total 500 0 0 18.75 48.95 49.27 0.03  
 
 
 

 
 

 
 
 
 

4.3. Case II:

FFR sizing results with first stage of UFLS
The analysis permits activation of the first Under-Frequency Load

Shedding (UFLS) stage, with target frequency ftgtNadir = 48.9Hz (threshold
for second-stage UFLS activation). Initial Dynamic Security Assessment
(DSA) with zero FFR allocation identified 105 critical scenarios vio-
lating this threshold, as shown in Fig.  11a. Following FFR capacity
prediction using (5), the algorithm converged within two iterations
(Table  6).

The worst-case FFR requirement reached 18.75MW (∞-norm), with
energy consumption averaging 0.14MWh for critical scenarios and
aggregate consumption remaining at 0.03MWh when considering all
500 operational cases. This demonstrates efficient FFR allocation where
most scenarios required no reserve activation.
9 
Fig.  11b illustrates the correlation between Nadir and the required 
FFR power to achieve the target. Compared to the non-UFLS case, there 
is slightly greater dispersion but a similar near-linear relationship. The 
sensitivity of the methodology to KE and FCR variations persists, but 
UFLS activation introduces additional complexity. The frequency tra-
jectory is now influenced by KE, FCR, and UFLS response, making FFR 
estimation less predictable than in the non-UFLS scenario. Notably, no 
correlation between RoCoF and FFR is observed, attributable to vary-
ing FCR characteristics and the hybrid discrete-continuous dynamics 
introduced by UFLS.

4.4. Discussions

The methodology was evaluated under two scenarios: without UFLS 
and with one UFLS stage permitted. Allowing a single UFLS stage 
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Fig. 10. Loss of generator events without activation of the UFLS scheme: (a) Nadir correlation with FCR and KE; (b) FFR requirements correlation with each scenario Nadir; and, 
(c) FFR requirements correlation with each scenario RoCoF.
Fig. 11. Loss of generator events with the first stage of UFLS Scheme accepted. (a) Nadir correlation with FCR and KE. (b) FFR requirements correlation with each scenario Nadir. 
(c) FFR requirements correlation with each scenario RoCoF.
reduced maximum FFR requirements by approximately 55%. Accuracy, 
measured as deviation from target frequency, improved significantly 
with UFLS activation. As illustrated in Fig.  12, the maximum devi-
ation decreased from 0.12 Hz (no UFLS) to 0.08 Hz (with UFLS). 
This enhancement likely stems from the time segmentation approach 
employed in the methodology.

The proposed methodology exhibits two principal limitations. First, 
parameter selection – particularly error tolerance, target frequency
thresholds, and scenario quantity – requires careful calibration between 
computational efficiency and precision. Excessively tight tolerances 
risk non-convergence, while overly lenient settings induce conservative 
overdesign through excessive FFR allocations. Second, the discrete FFR 
10 
activation logic coupled with full nonlinear system dynamics creates 
a mixed-integer differential–algebraic formulation. This mathemati-
cal complexity, involving gradient-descent minimization across nu-
merous scenarios, fundamentally obstructs formal convergence proofs 
despite the method’s demonstrated empirical effectiveness in practical 
applications.

5. Conclusion

This paper presents a novel data-driven methodology for sizing 
FFR requirements in low-inertia power systems, specifically addressing 
post-disturbance frequency Nadir security challenges. As modern grids 
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Fig. 12. Range of frequency Nadir after the implementation of the methodology.
integrate increasing levels of RES, traditional frequency support mech-
anisms prove inadequate, necessitating advanced solutions employing 
rapid-acting reserves like FFR. Through a rigorous framework com-
bining dynamic security assessment with gradient-descent-based linear 
prediction, this work establishes an iterative process to optimize FFR 
capacity across critical historical operating scenarios.

Validation on the Cyprus power system demonstrates the method’s 
effectiveness in enhancing grid resilience, achieving target frequency 
Nadir thresholds with minimal computational load while significantly 
reducing dependence on UFLS activations. The proposed approach 
exhibits strong scalability, enabling adaptation to diverse grid con-
figurations and operational conditions without requiring fundamental 
algorithmic modifications. By systematically optimizing FFR allocation, 
the methodology reduces reliance on conventional frequency reserves 
while maintaining compliance with operational constraints – a crit-
ical capability for TSOs navigating the transition to high-renewable 
penetration scenarios.

The practical implementation framework enables TSOs to precisely 
determine FFR requirements for maintaining frequency security fol-
lowing major disturbances. This capability supports the integration 
of higher RES shares while preserving frequency stability, directly 
contributing to power sector decarbonization objectives. Strategic de-
ployment of this methodology could prevent unnecessary conventional 
reserve capacity in systems comparable to Cyprus’ scale, representing 
significant cost savings and accelerated clean energy adoption.

Future research directions will investigate three key extensions: (1) 
hybrid energy storage architectures integrating flywheels, synchronous 
condensers, and supercapacitors with BESS, (2) combined optimization 
of FFR placement with synthetic inertia provision strategies, and (3) 
stochastic formulations addressing real-time renewable variability. Ad-
ditional work will develop techno-economic models balancing capital 
investments against reliability metrics, while advanced convex relax-
ation techniques will enhance computational efficiency for large-scale 
implementations. These developments aim to create a comprehensive 
decision-support toolkit for next-generation low-inertia grid operations.
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